Metamath Proof Explorer


Theorem hlatlej2

Description: A join's second argument is less than or equal to the join. Special case of latlej2 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l ˙=K
hlatlej.j ˙=joinK
hlatlej.a A=AtomsK
Assertion hlatlej2 KHLPAQAQ˙P˙Q

Proof

Step Hyp Ref Expression
1 hlatlej.l ˙=K
2 hlatlej.j ˙=joinK
3 hlatlej.a A=AtomsK
4 1 2 3 hlatlej1 KHLQAPAQ˙Q˙P
5 4 3com23 KHLPAQAQ˙Q˙P
6 2 3 hlatjcom KHLPAQAP˙Q=Q˙P
7 5 6 breqtrrd KHLPAQAQ˙P˙Q