Metamath Proof Explorer


Theorem hlcmet

Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x X=BaseSetU
hlcmet.8 D=IndMetU
Assertion hlcmet UCHilOLDDCMetX

Proof

Step Hyp Ref Expression
1 hlcmet.x X=BaseSetU
2 hlcmet.8 D=IndMetU
3 hlobn UCHilOLDUCBan
4 1 2 cbncms UCBanDCMetX
5 3 4 syl UCHilOLDDCMetX