Metamath Proof Explorer


Theorem hlhillsm

Description: The vector sum operation for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhil0.h H=LHypK
hlhil0.l L=DVecHKW
hlhil0.u U=HLHilKW
hlhil0.k φKHLWH
hlhillsm.a ˙=LSSumL
Assertion hlhillsm φ˙=LSSumU

Proof

Step Hyp Ref Expression
1 hlhil0.h H=LHypK
2 hlhil0.l L=DVecHKW
3 hlhil0.u U=HLHilKW
4 hlhil0.k φKHLWH
5 hlhillsm.a ˙=LSSumL
6 eqidd φBaseL=BaseL
7 eqid BaseL=BaseL
8 1 3 4 2 7 hlhilbase φBaseL=BaseU
9 eqid +L=+L
10 1 3 4 2 9 hlhilplus φ+L=+U
11 10 oveqdr φxBaseLyBaseLx+Ly=x+Uy
12 2 fvexi LV
13 12 a1i φLV
14 3 fvexi UV
15 14 a1i φUV
16 6 8 11 13 15 lsmpropd φLSSumL=LSSumU
17 5 16 eqtrid φ˙=LSSumU