| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhil0.h |
|
| 2 |
|
hlhil0.l |
|
| 3 |
|
hlhil0.u |
|
| 4 |
|
hlhil0.k |
|
| 5 |
|
hlhilocv.v |
|
| 6 |
|
hlhilocv.n |
|
| 7 |
|
hlhilocv.o |
|
| 8 |
|
hlhilocv.x |
|
| 9 |
1 3 4 2 5
|
hlhilbase |
|
| 10 |
|
rabeq |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
4
|
ad2antrr |
|
| 14 |
|
eqid |
|
| 15 |
|
simplr |
|
| 16 |
8
|
adantr |
|
| 17 |
16
|
sselda |
|
| 18 |
1 2 5 12 3 13 14 15 17
|
hlhilipval |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
1 2 19 3 20 4 21
|
hlhils0 |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
18 24
|
eqeq12d |
|
| 26 |
25
|
ralbidva |
|
| 27 |
26
|
rabbidva |
|
| 28 |
11 27
|
eqtr3d |
|
| 29 |
8 9
|
sseqtrd |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
30 14 20 31 7
|
ocvval |
|
| 33 |
29 32
|
syl |
|
| 34 |
1 2 5 19 21 6 12 4 8
|
hdmapoc |
|
| 35 |
28 33 34
|
3eqtr4d |
|