Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillcs.h |
|
2 |
|
hlhillcs.i |
|
3 |
|
hlhillcs.u |
|
4 |
|
hlhillcs.c |
|
5 |
|
hlhillcs.k |
|
6 |
3
|
fvexi |
|
7 |
|
eqid |
|
8 |
7 4
|
iscss |
|
9 |
6 8
|
mp1i |
|
10 |
9
|
biimpa |
|
11 |
|
eqid |
|
12 |
11 4
|
cssss |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
5
|
adantr |
|
17 |
1 3 5 13 14
|
hlhilbase |
|
18 |
17
|
sseq2d |
|
19 |
18
|
biimpar |
|
20 |
1 2 13 14 15 16 19
|
dochoccl |
|
21 |
|
eqcom |
|
22 |
1 13 3 16 14 15 7 19
|
hlhilocv |
|
23 |
22
|
fveq2d |
|
24 |
1 13 14 15
|
dochssv |
|
25 |
16 19 24
|
syl2anc |
|
26 |
1 13 3 16 14 15 7 25
|
hlhilocv |
|
27 |
23 26
|
eqtrd |
|
28 |
27
|
eqeq1d |
|
29 |
21 28
|
syl5bb |
|
30 |
20 29
|
bitr4d |
|
31 |
12 30
|
sylan2 |
|
32 |
10 31
|
mpbird |
|
33 |
|
simpr |
|
34 |
5
|
adantr |
|
35 |
1 13 2 14
|
dihrnss |
|
36 |
5 35
|
sylan |
|
37 |
1 13 3 34 14 15 7 36
|
hlhilocv |
|
38 |
37
|
fveq2d |
|
39 |
34 36 24
|
syl2anc |
|
40 |
1 13 3 34 14 15 7 39
|
hlhilocv |
|
41 |
38 40
|
eqtrd |
|
42 |
41
|
eqeq1d |
|
43 |
42
|
biimpar |
|
44 |
43
|
eqcomd |
|
45 |
44
|
ex |
|
46 |
1 2 13 14 15 34 36
|
dochoccl |
|
47 |
6 8
|
mp1i |
|
48 |
45 46 47
|
3imtr4d |
|
49 |
33 48
|
mpd |
|
50 |
32 49
|
impbida |
|
51 |
50
|
eqrdv |
|