Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillcs.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhillcs.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
hlhillcs.u |
|- U = ( ( HLHil ` K ) ` W ) |
4 |
|
hlhillcs.c |
|- C = ( ClSubSp ` U ) |
5 |
|
hlhillcs.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
3
|
fvexi |
|- U e. _V |
7 |
|
eqid |
|- ( ocv ` U ) = ( ocv ` U ) |
8 |
7 4
|
iscss |
|- ( U e. _V -> ( x e. C <-> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
9 |
6 8
|
mp1i |
|- ( ph -> ( x e. C <-> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
10 |
9
|
biimpa |
|- ( ( ph /\ x e. C ) -> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) |
11 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
12 |
11 4
|
cssss |
|- ( x e. C -> x C_ ( Base ` U ) ) |
13 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
14 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
15 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
16 |
5
|
adantr |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
1 3 5 13 14
|
hlhilbase |
|- ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` U ) ) |
18 |
17
|
sseq2d |
|- ( ph -> ( x C_ ( Base ` ( ( DVecH ` K ) ` W ) ) <-> x C_ ( Base ` U ) ) ) |
19 |
18
|
biimpar |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> x C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
20 |
1 2 13 14 15 16 19
|
dochoccl |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( x e. ran I <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
21 |
|
eqcom |
|- ( x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) <-> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = x ) |
22 |
1 13 3 16 14 15 7 19
|
hlhilocv |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ocv ` U ) ` x ) = ( ( ( ocH ` K ) ` W ) ` x ) ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = ( ( ocv ` U ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
24 |
1 13 14 15
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ x C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( ( ( ocH ` K ) ` W ) ` x ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
25 |
16 19 24
|
syl2anc |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ( ocH ` K ) ` W ) ` x ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
26 |
1 13 3 16 14 15 7 25
|
hlhilocv |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ocv ` U ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
27 |
23 26
|
eqtrd |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
28 |
27
|
eqeq1d |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = x <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
29 |
21 28
|
syl5bb |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
30 |
20 29
|
bitr4d |
|- ( ( ph /\ x C_ ( Base ` U ) ) -> ( x e. ran I <-> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
31 |
12 30
|
sylan2 |
|- ( ( ph /\ x e. C ) -> ( x e. ran I <-> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
32 |
10 31
|
mpbird |
|- ( ( ph /\ x e. C ) -> x e. ran I ) |
33 |
|
simpr |
|- ( ( ph /\ x e. ran I ) -> x e. ran I ) |
34 |
5
|
adantr |
|- ( ( ph /\ x e. ran I ) -> ( K e. HL /\ W e. H ) ) |
35 |
1 13 2 14
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> x C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
36 |
5 35
|
sylan |
|- ( ( ph /\ x e. ran I ) -> x C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
37 |
1 13 3 34 14 15 7 36
|
hlhilocv |
|- ( ( ph /\ x e. ran I ) -> ( ( ocv ` U ) ` x ) = ( ( ( ocH ` K ) ` W ) ` x ) ) |
38 |
37
|
fveq2d |
|- ( ( ph /\ x e. ran I ) -> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = ( ( ocv ` U ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
39 |
34 36 24
|
syl2anc |
|- ( ( ph /\ x e. ran I ) -> ( ( ( ocH ` K ) ` W ) ` x ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
40 |
1 13 3 34 14 15 7 39
|
hlhilocv |
|- ( ( ph /\ x e. ran I ) -> ( ( ocv ` U ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
41 |
38 40
|
eqtrd |
|- ( ( ph /\ x e. ran I ) -> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
42 |
41
|
eqeq1d |
|- ( ( ph /\ x e. ran I ) -> ( ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = x <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
43 |
42
|
biimpar |
|- ( ( ( ph /\ x e. ran I ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) -> ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) = x ) |
44 |
43
|
eqcomd |
|- ( ( ( ph /\ x e. ran I ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) -> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) |
45 |
44
|
ex |
|- ( ( ph /\ x e. ran I ) -> ( ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x -> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
46 |
1 2 13 14 15 34 36
|
dochoccl |
|- ( ( ph /\ x e. ran I ) -> ( x e. ran I <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
47 |
6 8
|
mp1i |
|- ( ( ph /\ x e. ran I ) -> ( x e. C <-> x = ( ( ocv ` U ) ` ( ( ocv ` U ) ` x ) ) ) ) |
48 |
45 46 47
|
3imtr4d |
|- ( ( ph /\ x e. ran I ) -> ( x e. ran I -> x e. C ) ) |
49 |
33 48
|
mpd |
|- ( ( ph /\ x e. ran I ) -> x e. C ) |
50 |
32 49
|
impbida |
|- ( ph -> ( x e. C <-> x e. ran I ) ) |
51 |
50
|
eqrdv |
|- ( ph -> C = ran I ) |