Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillcs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhillcs.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhillcs.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hlhillcs.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑈 ) |
5 |
|
hlhillcs.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
7 |
|
eqid |
⊢ ( ocv ‘ 𝑈 ) = ( ocv ‘ 𝑈 ) |
8 |
7 4
|
iscss |
⊢ ( 𝑈 ∈ V → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
9 |
6 8
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
12 |
11 4
|
cssss |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ⊆ ( Base ‘ 𝑈 ) ) |
13 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
1 3 5 13 14
|
hlhilbase |
⊢ ( 𝜑 → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
18 |
17
|
sseq2d |
⊢ ( 𝜑 → ( 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
20 |
1 2 13 14 15 16 19
|
dochoccl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
21 |
|
eqcom |
⊢ ( 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ) |
22 |
1 13 3 16 14 15 7 19
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
24 |
1 13 14 15
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
25 |
16 19 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
26 |
1 13 3 16 14 15 7 25
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
27 |
23 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
28 |
27
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
29 |
21 28
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
30 |
20 29
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 ∈ ran 𝐼 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
31 |
12 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ran 𝐼 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
32 |
10 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ran 𝐼 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ∈ ran 𝐼 ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
35 |
1 13 2 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
36 |
5 35
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
37 |
1 13 3 34 14 15 7 36
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
39 |
34 36 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
40 |
1 13 3 34 14 15 7 39
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
41 |
38 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
42 |
41
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
43 |
42
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ) |
44 |
43
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
46 |
1 2 13 14 15 34 36
|
dochoccl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
47 |
6 8
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
48 |
45 46 47
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶 ) ) |
49 |
33 48
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ∈ 𝐶 ) |
50 |
32 49
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼 ) ) |
51 |
50
|
eqrdv |
⊢ ( 𝜑 → 𝐶 = ran 𝐼 ) |