| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillcs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhillcs.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhillcs.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hlhillcs.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑈 ) |
| 5 |
|
hlhillcs.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
| 7 |
|
eqid |
⊢ ( ocv ‘ 𝑈 ) = ( ocv ‘ 𝑈 ) |
| 8 |
7 4
|
iscss |
⊢ ( 𝑈 ∈ V → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 9 |
6 8
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 12 |
11 4
|
cssss |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ⊆ ( Base ‘ 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 15 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
1 3 5 13 14
|
hlhilbase |
⊢ ( 𝜑 → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
| 18 |
17
|
sseq2d |
⊢ ( 𝜑 → ( 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) ) |
| 19 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 20 |
1 2 13 14 15 16 19
|
dochoccl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 21 |
|
eqcom |
⊢ ( 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 22 |
1 13 3 16 14 15 7 19
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 24 |
1 13 14 15
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 25 |
16 19 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 26 |
1 13 3 16 14 15 7 25
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 27 |
23 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 28 |
27
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 29 |
21 28
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 30 |
20 29
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑥 ∈ ran 𝐼 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 31 |
12 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ran 𝐼 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 32 |
10 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ran 𝐼 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ∈ ran 𝐼 ) |
| 34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 35 |
1 13 2 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 36 |
5 35
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 37 |
1 13 3 34 14 15 7 36
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 39 |
34 36 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 40 |
1 13 3 34 14 15 7 39
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 41 |
38 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 42 |
41
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 43 |
42
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) → ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 44 |
43
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) ∧ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 → 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 46 |
1 2 13 14 15 34 36
|
dochoccl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 47 |
6 8
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ 𝐶 ↔ 𝑥 = ( ( ocv ‘ 𝑈 ) ‘ ( ( ocv ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 48 |
45 46 47
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶 ) ) |
| 49 |
33 48
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ∈ 𝐶 ) |
| 50 |
32 49
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼 ) ) |
| 51 |
50
|
eqrdv |
⊢ ( 𝜑 → 𝐶 = ran 𝐼 ) |