| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilphl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhilphllem.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhilphl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 4 |
|
hlhilphllem.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
hlhilphllem.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hlhilphllem.v |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
| 7 |
|
hlhilphllem.a |
⊢ + = ( +g ‘ 𝐿 ) |
| 8 |
|
hlhilphllem.s |
⊢ · = ( ·𝑠 ‘ 𝐿 ) |
| 9 |
|
hlhilphllem.r |
⊢ 𝑅 = ( Scalar ‘ 𝐿 ) |
| 10 |
|
hlhilphllem.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 11 |
|
hlhilphllem.p |
⊢ ⨣ = ( +g ‘ 𝑅 ) |
| 12 |
|
hlhilphllem.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 13 |
|
hlhilphllem.q |
⊢ 𝑄 = ( 0g ‘ 𝑅 ) |
| 14 |
|
hlhilphllem.z |
⊢ 0 = ( 0g ‘ 𝐿 ) |
| 15 |
|
hlhilphllem.i |
⊢ , = ( ·𝑖 ‘ 𝑈 ) |
| 16 |
|
hlhilphllem.j |
⊢ 𝐽 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 17 |
|
hlhilphllem.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 18 |
|
hlhilphllem.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝐽 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 19 |
1 2 3 5 6
|
hlhilbase |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑈 ) ) |
| 20 |
1 2 3 5 7
|
hlhilplus |
⊢ ( 𝜑 → + = ( +g ‘ 𝑈 ) ) |
| 21 |
1 5 8 2 3
|
hlhilvsca |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑈 ) ) |
| 22 |
15
|
a1i |
⊢ ( 𝜑 → , = ( ·𝑖 ‘ 𝑈 ) ) |
| 23 |
1 5 2 3 14
|
hlhil0 |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑈 ) ) |
| 24 |
4
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑈 ) ) |
| 25 |
1 5 9 2 4 3 10
|
hlhilsbase2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) |
| 26 |
1 5 9 2 4 3 11
|
hlhilsplus2 |
⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) |
| 27 |
1 5 9 2 4 3 12
|
hlhilsmul2 |
⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) |
| 28 |
1 2 4 17 3
|
hlhilnvl |
⊢ ( 𝜑 → 𝐺 = ( *𝑟 ‘ 𝐹 ) ) |
| 29 |
1 5 9 2 4 3 13
|
hlhils0 |
⊢ ( 𝜑 → 𝑄 = ( 0g ‘ 𝐹 ) ) |
| 30 |
1 2 3
|
hlhillvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 31 |
1 2 3 4
|
hlhilsrng |
⊢ ( 𝜑 → 𝐹 ∈ *-Ring ) |
| 32 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 35 |
1 5 6 16 2 32 15 33 34
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 , 𝑏 ) = ( ( 𝐽 ‘ 𝑏 ) ‘ 𝑎 ) ) |
| 36 |
1 5 6 9 10 16 32 33 34
|
hdmapipcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐽 ‘ 𝑏 ) ‘ 𝑎 ) ∈ 𝐵 ) |
| 37 |
35 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 , 𝑏 ) ∈ 𝐵 ) |
| 38 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 39 |
|
simp31 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) |
| 40 |
|
simp32 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
| 41 |
|
simp33 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑐 ∈ 𝑉 ) |
| 42 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑑 ∈ 𝐵 ) |
| 43 |
1 5 6 7 8 9 10 11 12 16 38 39 40 41 42
|
hdmapln1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝐽 ‘ 𝑐 ) ‘ ( ( 𝑑 · 𝑎 ) + 𝑏 ) ) = ( ( 𝑑 × ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑎 ) ) ⨣ ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑏 ) ) ) |
| 44 |
1 5 3
|
dvhlmod |
⊢ ( 𝜑 → 𝐿 ∈ LMod ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝐿 ∈ LMod ) |
| 46 |
6 9 8 10
|
lmodvscl |
⊢ ( ( 𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉 ) → ( 𝑑 · 𝑎 ) ∈ 𝑉 ) |
| 47 |
45 42 39 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑑 · 𝑎 ) ∈ 𝑉 ) |
| 48 |
6 7
|
lmodvacl |
⊢ ( ( 𝐿 ∈ LMod ∧ ( 𝑑 · 𝑎 ) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑑 · 𝑎 ) + 𝑏 ) ∈ 𝑉 ) |
| 49 |
45 47 40 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑑 · 𝑎 ) + 𝑏 ) ∈ 𝑉 ) |
| 50 |
1 5 6 16 2 38 15 49 41
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( ( 𝑑 · 𝑎 ) + 𝑏 ) , 𝑐 ) = ( ( 𝐽 ‘ 𝑐 ) ‘ ( ( 𝑑 · 𝑎 ) + 𝑏 ) ) ) |
| 51 |
1 5 6 16 2 38 15 39 41
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 , 𝑐 ) = ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑎 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑑 × ( 𝑎 , 𝑐 ) ) = ( 𝑑 × ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑎 ) ) ) |
| 53 |
1 5 6 16 2 38 15 40 41
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑏 , 𝑐 ) = ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑏 ) ) |
| 54 |
52 53
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑑 × ( 𝑎 , 𝑐 ) ) ⨣ ( 𝑏 , 𝑐 ) ) = ( ( 𝑑 × ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑎 ) ) ⨣ ( ( 𝐽 ‘ 𝑐 ) ‘ 𝑏 ) ) ) |
| 55 |
43 50 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( ( 𝑑 · 𝑎 ) + 𝑏 ) , 𝑐 ) = ( ( 𝑑 × ( 𝑎 , 𝑐 ) ) ⨣ ( 𝑏 , 𝑐 ) ) ) |
| 56 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 58 |
1 5 6 16 2 56 15 57 57
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 , 𝑎 ) = ( ( 𝐽 ‘ 𝑎 ) ‘ 𝑎 ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑎 , 𝑎 ) = 𝑄 ↔ ( ( 𝐽 ‘ 𝑎 ) ‘ 𝑎 ) = 𝑄 ) ) |
| 60 |
1 5 6 14 9 13 16 56 57
|
hdmapip0 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → ( ( ( 𝐽 ‘ 𝑎 ) ‘ 𝑎 ) = 𝑄 ↔ 𝑎 = 0 ) ) |
| 61 |
59 60
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑎 , 𝑎 ) = 𝑄 ↔ 𝑎 = 0 ) ) |
| 62 |
61
|
biimp3a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ ( 𝑎 , 𝑎 ) = 𝑄 ) → 𝑎 = 0 ) |
| 63 |
1 5 6 16 17 32 33 34
|
hdmapg |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐺 ‘ ( ( 𝐽 ‘ 𝑏 ) ‘ 𝑎 ) ) = ( ( 𝐽 ‘ 𝑎 ) ‘ 𝑏 ) ) |
| 64 |
35
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑎 , 𝑏 ) ) = ( 𝐺 ‘ ( ( 𝐽 ‘ 𝑏 ) ‘ 𝑎 ) ) ) |
| 65 |
1 5 6 16 2 32 15 34 33
|
hlhilipval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 , 𝑎 ) = ( ( 𝐽 ‘ 𝑎 ) ‘ 𝑏 ) ) |
| 66 |
63 64 65
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑎 , 𝑏 ) ) = ( 𝑏 , 𝑎 ) ) |
| 67 |
19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66
|
isphld |
⊢ ( 𝜑 → 𝑈 ∈ PreHil ) |