Metamath Proof Explorer


Theorem hlhilhillem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilphllem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilphl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilphllem.f 𝐹 = ( Scalar ‘ 𝑈 )
hlhilphllem.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilphllem.v 𝑉 = ( Base ‘ 𝐿 )
hlhilphllem.a + = ( +g𝐿 )
hlhilphllem.s · = ( ·𝑠𝐿 )
hlhilphllem.r 𝑅 = ( Scalar ‘ 𝐿 )
hlhilphllem.b 𝐵 = ( Base ‘ 𝑅 )
hlhilphllem.p = ( +g𝑅 )
hlhilphllem.t × = ( .r𝑅 )
hlhilphllem.q 𝑄 = ( 0g𝑅 )
hlhilphllem.z 0 = ( 0g𝐿 )
hlhilphllem.i , = ( ·𝑖𝑈 )
hlhilphllem.j 𝐽 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hlhilphllem.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hlhilphllem.e 𝐸 = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝐽𝑦 ) ‘ 𝑥 ) )
hlhilphllem.o 𝑂 = ( ocv ‘ 𝑈 )
hlhilphllem.c 𝐶 = ( ClSubSp ‘ 𝑈 )
Assertion hlhilhillem ( 𝜑𝑈 ∈ Hil )

Proof

Step Hyp Ref Expression
1 hlhilphl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilphllem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilphl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 hlhilphllem.f 𝐹 = ( Scalar ‘ 𝑈 )
5 hlhilphllem.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 hlhilphllem.v 𝑉 = ( Base ‘ 𝐿 )
7 hlhilphllem.a + = ( +g𝐿 )
8 hlhilphllem.s · = ( ·𝑠𝐿 )
9 hlhilphllem.r 𝑅 = ( Scalar ‘ 𝐿 )
10 hlhilphllem.b 𝐵 = ( Base ‘ 𝑅 )
11 hlhilphllem.p = ( +g𝑅 )
12 hlhilphllem.t × = ( .r𝑅 )
13 hlhilphllem.q 𝑄 = ( 0g𝑅 )
14 hlhilphllem.z 0 = ( 0g𝐿 )
15 hlhilphllem.i , = ( ·𝑖𝑈 )
16 hlhilphllem.j 𝐽 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
17 hlhilphllem.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
18 hlhilphllem.e 𝐸 = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝐽𝑦 ) ‘ 𝑥 ) )
19 hlhilphllem.o 𝑂 = ( ocv ‘ 𝑈 )
20 hlhilphllem.c 𝐶 = ( ClSubSp ‘ 𝑈 )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hlhilphllem ( 𝜑𝑈 ∈ PreHil )
22 3 adantr ( ( 𝜑𝑥𝐶 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
24 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
25 1 24 2 20 3 hlhillcs ( 𝜑𝐶 = ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
26 25 eleq2d ( 𝜑 → ( 𝑥𝐶𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) )
27 26 biimpa ( ( 𝜑𝑥𝐶 ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
28 1 5 24 6 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥𝑉 )
29 3 28 sylan ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥𝑉 )
30 27 29 syldan ( ( 𝜑𝑥𝐶 ) → 𝑥𝑉 )
31 1 5 2 22 6 23 19 30 hlhilocv ( ( 𝜑𝑥𝐶 ) → ( 𝑂𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )
32 31 oveq2d ( ( 𝜑𝑥𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( 𝑂𝑥 ) ) = ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
33 eqid ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 )
34 1 5 2 3 33 hlhillsm ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝑈 ) )
35 34 adantr ( ( 𝜑𝑥𝐶 ) → ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝑈 ) )
36 35 oveqd ( ( 𝜑𝑥𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( 𝑂𝑥 ) ) = ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂𝑥 ) ) )
37 eqid ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 )
38 3 adantr ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
39 1 5 24 37 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( LSubSp ‘ 𝐿 ) )
40 3 39 sylan ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( LSubSp ‘ 𝐿 ) )
41 1 24 5 6 23 38 29 dochoccl ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) )
42 41 biimpd ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) )
43 42 ex ( 𝜑 → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) )
44 43 pm2.43d ( 𝜑 → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) )
45 44 imp ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 )
46 1 23 5 6 37 33 38 40 45 dochexmid ( ( 𝜑𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑉 )
47 27 46 syldan ( ( 𝜑𝑥𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑉 )
48 32 36 47 3eqtr3d ( ( 𝜑𝑥𝐶 ) → ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂𝑥 ) ) = 𝑉 )
49 1 2 3 5 6 hlhilbase ( 𝜑𝑉 = ( Base ‘ 𝑈 ) )
50 49 adantr ( ( 𝜑𝑥𝐶 ) → 𝑉 = ( Base ‘ 𝑈 ) )
51 48 50 eqtrd ( ( 𝜑𝑥𝐶 ) → ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂𝑥 ) ) = ( Base ‘ 𝑈 ) )
52 51 ralrimiva ( 𝜑 → ∀ 𝑥𝐶 ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂𝑥 ) ) = ( Base ‘ 𝑈 ) )
53 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
54 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
55 53 54 19 20 ishil2 ( 𝑈 ∈ Hil ↔ ( 𝑈 ∈ PreHil ∧ ∀ 𝑥𝐶 ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂𝑥 ) ) = ( Base ‘ 𝑈 ) ) )
56 21 52 55 sylanbrc ( 𝜑𝑈 ∈ Hil )