Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilphl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilphllem.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilphl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
hlhilphllem.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
5 |
|
hlhilphllem.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hlhilphllem.v |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
7 |
|
hlhilphllem.a |
⊢ + = ( +g ‘ 𝐿 ) |
8 |
|
hlhilphllem.s |
⊢ · = ( ·𝑠 ‘ 𝐿 ) |
9 |
|
hlhilphllem.r |
⊢ 𝑅 = ( Scalar ‘ 𝐿 ) |
10 |
|
hlhilphllem.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
11 |
|
hlhilphllem.p |
⊢ ⨣ = ( +g ‘ 𝑅 ) |
12 |
|
hlhilphllem.t |
⊢ × = ( .r ‘ 𝑅 ) |
13 |
|
hlhilphllem.q |
⊢ 𝑄 = ( 0g ‘ 𝑅 ) |
14 |
|
hlhilphllem.z |
⊢ 0 = ( 0g ‘ 𝐿 ) |
15 |
|
hlhilphllem.i |
⊢ , = ( ·𝑖 ‘ 𝑈 ) |
16 |
|
hlhilphllem.j |
⊢ 𝐽 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
hlhilphllem.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
hlhilphllem.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝐽 ‘ 𝑦 ) ‘ 𝑥 ) ) |
19 |
|
hlhilphllem.o |
⊢ 𝑂 = ( ocv ‘ 𝑈 ) |
20 |
|
hlhilphllem.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑈 ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hlhilphllem |
⊢ ( 𝜑 → 𝑈 ∈ PreHil ) |
22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
25 |
1 24 2 20 3
|
hlhillcs |
⊢ ( 𝜑 → 𝐶 = ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
26 |
25
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
27 |
26
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
1 5 24 6
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ⊆ 𝑉 ) |
29 |
3 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ⊆ 𝑉 ) |
30 |
27 29
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ⊆ 𝑉 ) |
31 |
1 5 2 22 6 23 19 30
|
hlhilocv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑂 ‘ 𝑥 ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( 𝑂 ‘ 𝑥 ) ) = ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
33 |
|
eqid |
⊢ ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 ) |
34 |
1 5 2 3 33
|
hlhillsm |
⊢ ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝑈 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝑈 ) ) |
36 |
35
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( 𝑂 ‘ 𝑥 ) ) = ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂 ‘ 𝑥 ) ) ) |
37 |
|
eqid |
⊢ ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
39 |
1 5 24 37
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( LSubSp ‘ 𝐿 ) ) |
40 |
3 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( LSubSp ‘ 𝐿 ) ) |
41 |
1 24 5 6 23 38 29
|
dochoccl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
42 |
41
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) ) |
44 |
43
|
pm2.43d |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
45 |
44
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑥 ) |
46 |
1 23 5 6 37 33 38 40 45
|
dochexmid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑉 ) |
47 |
27 46
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ( LSSum ‘ 𝐿 ) ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = 𝑉 ) |
48 |
32 36 47
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂 ‘ 𝑥 ) ) = 𝑉 ) |
49 |
1 2 3 5 6
|
hlhilbase |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑈 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑉 = ( Base ‘ 𝑈 ) ) |
51 |
48 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂 ‘ 𝑥 ) ) = ( Base ‘ 𝑈 ) ) |
52 |
51
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂 ‘ 𝑥 ) ) = ( Base ‘ 𝑈 ) ) |
53 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
54 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
55 |
53 54 19 20
|
ishil2 |
⊢ ( 𝑈 ∈ Hil ↔ ( 𝑈 ∈ PreHil ∧ ∀ 𝑥 ∈ 𝐶 ( 𝑥 ( LSSum ‘ 𝑈 ) ( 𝑂 ‘ 𝑥 ) ) = ( Base ‘ 𝑈 ) ) ) |
56 |
21 52 55
|
sylanbrc |
⊢ ( 𝜑 → 𝑈 ∈ Hil ) |