Step |
Hyp |
Ref |
Expression |
1 |
|
hlhil0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhil0.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhil0.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hlhil0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
hlhilocv.v |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
6 |
|
hlhilocv.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hlhilocv.o |
⊢ 𝑂 = ( ocv ‘ 𝑈 ) |
8 |
|
hlhilocv.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
9 |
1 3 4 2 5
|
hlhilbase |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑈 ) ) |
10 |
|
rabeq |
⊢ ( 𝑉 = ( Base ‘ 𝑈 ) → { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) |
12 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑈 ) = ( ·𝑖 ‘ 𝑈 ) |
15 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑉 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 𝑋 ⊆ 𝑉 ) |
17 |
16
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑉 ) |
18 |
1 2 5 12 3 13 14 15 17
|
hlhilipval |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
20 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
21 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) |
22 |
1 2 19 3 20 4 21
|
hlhils0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ) |
23 |
22
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
25 |
18 24
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
26 |
25
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
27 |
26
|
rabbidva |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) |
28 |
11 27
|
eqtr3d |
⊢ ( 𝜑 → { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) |
29 |
8 9
|
sseqtrd |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
31 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
32 |
30 14 20 31 7
|
ocvval |
⊢ ( 𝑋 ⊆ ( Base ‘ 𝑈 ) → ( 𝑂 ‘ 𝑋 ) = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧 ∈ 𝑋 ( 𝑦 ( ·𝑖 ‘ 𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) |
34 |
1 2 5 19 21 6 12 4 8
|
hdmapoc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) |
35 |
28 33 34
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |