Metamath Proof Explorer


Theorem hlhilocv

Description: The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhil0.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhil0.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhil0.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhil0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilocv.v 𝑉 = ( Base ‘ 𝐿 )
hlhilocv.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hlhilocv.o 𝑂 = ( ocv ‘ 𝑈 )
hlhilocv.x ( 𝜑𝑋𝑉 )
Assertion hlhilocv ( 𝜑 → ( 𝑂𝑋 ) = ( 𝑁𝑋 ) )

Proof

Step Hyp Ref Expression
1 hlhil0.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhil0.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhil0.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4 hlhil0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 hlhilocv.v 𝑉 = ( Base ‘ 𝐿 )
6 hlhilocv.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 hlhilocv.o 𝑂 = ( ocv ‘ 𝑈 )
8 hlhilocv.x ( 𝜑𝑋𝑉 )
9 1 3 4 2 5 hlhilbase ( 𝜑𝑉 = ( Base ‘ 𝑈 ) )
10 rabeq ( 𝑉 = ( Base ‘ 𝑈 ) → { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )
11 9 10 syl ( 𝜑 → { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )
12 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
13 4 ad2antrr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 eqid ( ·𝑖𝑈 ) = ( ·𝑖𝑈 )
15 simplr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → 𝑦𝑉 )
16 8 adantr ( ( 𝜑𝑦𝑉 ) → 𝑋𝑉 )
17 16 sselda ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → 𝑧𝑉 )
18 1 2 5 12 3 13 14 15 17 hlhilipval ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) )
19 eqid ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 )
20 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
21 eqid ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) )
22 1 2 19 3 20 4 21 hlhils0 ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) )
23 22 eqcomd ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) )
24 23 ad2antrr ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) )
25 18 24 eqeq12d ( ( ( 𝜑𝑦𝑉 ) ∧ 𝑧𝑋 ) → ( ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) )
26 25 ralbidva ( ( 𝜑𝑦𝑉 ) → ( ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) ↔ ∀ 𝑧𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) )
27 26 rabbidva ( 𝜑 → { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } )
28 11 27 eqtr3d ( 𝜑 → { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } = { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } )
29 8 9 sseqtrd ( 𝜑𝑋 ⊆ ( Base ‘ 𝑈 ) )
30 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
31 eqid ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) )
32 30 14 20 31 7 ocvval ( 𝑋 ⊆ ( Base ‘ 𝑈 ) → ( 𝑂𝑋 ) = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )
33 29 32 syl ( 𝜑 → ( 𝑂𝑋 ) = { 𝑦 ∈ ( Base ‘ 𝑈 ) ∣ ∀ 𝑧𝑋 ( 𝑦 ( ·𝑖𝑈 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )
34 1 2 5 19 21 6 12 4 8 hdmapoc ( 𝜑 → ( 𝑁𝑋 ) = { 𝑦𝑉 ∣ ∀ 𝑧𝑋 ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑧 ) ‘ 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } )
35 28 33 34 3eqtr4d ( 𝜑 → ( 𝑂𝑋 ) = ( 𝑁𝑋 ) )