| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilphl.h |
|
| 2 |
|
hlhilphllem.u |
|
| 3 |
|
hlhilphl.k |
|
| 4 |
|
hlhilphllem.f |
|
| 5 |
|
hlhilphllem.l |
|
| 6 |
|
hlhilphllem.v |
|
| 7 |
|
hlhilphllem.a |
|
| 8 |
|
hlhilphllem.s |
|
| 9 |
|
hlhilphllem.r |
|
| 10 |
|
hlhilphllem.b |
|
| 11 |
|
hlhilphllem.p |
|
| 12 |
|
hlhilphllem.t |
|
| 13 |
|
hlhilphllem.q |
|
| 14 |
|
hlhilphllem.z |
|
| 15 |
|
hlhilphllem.i |
|
| 16 |
|
hlhilphllem.j |
|
| 17 |
|
hlhilphllem.g |
|
| 18 |
|
hlhilphllem.e |
|
| 19 |
|
hlhilphllem.o |
|
| 20 |
|
hlhilphllem.c |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hlhilphllem |
|
| 22 |
3
|
adantr |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
1 24 2 20 3
|
hlhillcs |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
biimpa |
|
| 28 |
1 5 24 6
|
dihrnss |
|
| 29 |
3 28
|
sylan |
|
| 30 |
27 29
|
syldan |
|
| 31 |
1 5 2 22 6 23 19 30
|
hlhilocv |
|
| 32 |
31
|
oveq2d |
|
| 33 |
|
eqid |
|
| 34 |
1 5 2 3 33
|
hlhillsm |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
oveqd |
|
| 37 |
|
eqid |
|
| 38 |
3
|
adantr |
|
| 39 |
1 5 24 37
|
dihrnlss |
|
| 40 |
3 39
|
sylan |
|
| 41 |
1 24 5 6 23 38 29
|
dochoccl |
|
| 42 |
41
|
biimpd |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
pm2.43d |
|
| 45 |
44
|
imp |
|
| 46 |
1 23 5 6 37 33 38 40 45
|
dochexmid |
|
| 47 |
27 46
|
syldan |
|
| 48 |
32 36 47
|
3eqtr3d |
|
| 49 |
1 2 3 5 6
|
hlhilbase |
|
| 50 |
49
|
adantr |
|
| 51 |
48 50
|
eqtrd |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
53 54 19 20
|
ishil2 |
|
| 56 |
21 52 55
|
sylanbrc |
|