Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlhilphl.h | |
|
hlhilphllem.u | |
||
hlhilphl.k | |
||
hlhilphllem.f | |
||
hlhilphllem.l | |
||
hlhilphllem.v | |
||
hlhilphllem.a | |
||
hlhilphllem.s | |
||
hlhilphllem.r | |
||
hlhilphllem.b | |
||
hlhilphllem.p | |
||
hlhilphllem.t | |
||
hlhilphllem.q | |
||
hlhilphllem.z | |
||
hlhilphllem.i | |
||
hlhilphllem.j | |
||
hlhilphllem.g | |
||
hlhilphllem.e | |
||
Assertion | hlhilphllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | |
|
2 | hlhilphllem.u | |
|
3 | hlhilphl.k | |
|
4 | hlhilphllem.f | |
|
5 | hlhilphllem.l | |
|
6 | hlhilphllem.v | |
|
7 | hlhilphllem.a | |
|
8 | hlhilphllem.s | |
|
9 | hlhilphllem.r | |
|
10 | hlhilphllem.b | |
|
11 | hlhilphllem.p | |
|
12 | hlhilphllem.t | |
|
13 | hlhilphllem.q | |
|
14 | hlhilphllem.z | |
|
15 | hlhilphllem.i | |
|
16 | hlhilphllem.j | |
|
17 | hlhilphllem.g | |
|
18 | hlhilphllem.e | |
|
19 | 1 2 3 5 6 | hlhilbase | |
20 | 1 2 3 5 7 | hlhilplus | |
21 | 1 5 8 2 3 | hlhilvsca | |
22 | 15 | a1i | |
23 | 1 5 2 3 14 | hlhil0 | |
24 | 4 | a1i | |
25 | 1 5 9 2 4 3 10 | hlhilsbase2 | |
26 | 1 5 9 2 4 3 11 | hlhilsplus2 | |
27 | 1 5 9 2 4 3 12 | hlhilsmul2 | |
28 | 1 2 4 17 3 | hlhilnvl | |
29 | 1 5 9 2 4 3 13 | hlhils0 | |
30 | 1 2 3 | hlhillvec | |
31 | 1 2 3 4 | hlhilsrng | |
32 | 3 | 3ad2ant1 | |
33 | simp2 | |
|
34 | simp3 | |
|
35 | 1 5 6 16 2 32 15 33 34 | hlhilipval | |
36 | 1 5 6 9 10 16 32 33 34 | hdmapipcl | |
37 | 35 36 | eqeltrd | |
38 | 3 | 3ad2ant1 | |
39 | simp31 | |
|
40 | simp32 | |
|
41 | simp33 | |
|
42 | simp2 | |
|
43 | 1 5 6 7 8 9 10 11 12 16 38 39 40 41 42 | hdmapln1 | |
44 | 1 5 3 | dvhlmod | |
45 | 44 | 3ad2ant1 | |
46 | 6 9 8 10 | lmodvscl | |
47 | 45 42 39 46 | syl3anc | |
48 | 6 7 | lmodvacl | |
49 | 45 47 40 48 | syl3anc | |
50 | 1 5 6 16 2 38 15 49 41 | hlhilipval | |
51 | 1 5 6 16 2 38 15 39 41 | hlhilipval | |
52 | 51 | oveq2d | |
53 | 1 5 6 16 2 38 15 40 41 | hlhilipval | |
54 | 52 53 | oveq12d | |
55 | 43 50 54 | 3eqtr4d | |
56 | 3 | adantr | |
57 | simpr | |
|
58 | 1 5 6 16 2 56 15 57 57 | hlhilipval | |
59 | 58 | eqeq1d | |
60 | 1 5 6 14 9 13 16 56 57 | hdmapip0 | |
61 | 59 60 | bitrd | |
62 | 61 | biimp3a | |
63 | 1 5 6 16 17 32 33 34 | hdmapg | |
64 | 35 | fveq2d | |
65 | 1 5 6 16 2 32 15 34 33 | hlhilipval | |
66 | 63 64 65 | 3eqtr4d | |
67 | 19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66 | isphld | |