Metamath Proof Explorer


Theorem hlhilphllem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h H=LHypK
hlhilphllem.u U=HLHilKW
hlhilphl.k φKHLWH
hlhilphllem.f F=ScalarU
hlhilphllem.l L=DVecHKW
hlhilphllem.v V=BaseL
hlhilphllem.a +˙=+L
hlhilphllem.s ·˙=L
hlhilphllem.r R=ScalarL
hlhilphllem.b B=BaseR
hlhilphllem.p ˙=+R
hlhilphllem.t ×˙=R
hlhilphllem.q Q=0R
hlhilphllem.z 0˙=0L
hlhilphllem.i ,˙=𝑖U
hlhilphllem.j J=HDMapKW
hlhilphllem.g G=HGMapKW
hlhilphllem.e E=xV,yVJyx
Assertion hlhilphllem φUPreHil

Proof

Step Hyp Ref Expression
1 hlhilphl.h H=LHypK
2 hlhilphllem.u U=HLHilKW
3 hlhilphl.k φKHLWH
4 hlhilphllem.f F=ScalarU
5 hlhilphllem.l L=DVecHKW
6 hlhilphllem.v V=BaseL
7 hlhilphllem.a +˙=+L
8 hlhilphllem.s ·˙=L
9 hlhilphllem.r R=ScalarL
10 hlhilphllem.b B=BaseR
11 hlhilphllem.p ˙=+R
12 hlhilphllem.t ×˙=R
13 hlhilphllem.q Q=0R
14 hlhilphllem.z 0˙=0L
15 hlhilphllem.i ,˙=𝑖U
16 hlhilphllem.j J=HDMapKW
17 hlhilphllem.g G=HGMapKW
18 hlhilphllem.e E=xV,yVJyx
19 1 2 3 5 6 hlhilbase φV=BaseU
20 1 2 3 5 7 hlhilplus φ+˙=+U
21 1 5 8 2 3 hlhilvsca φ·˙=U
22 15 a1i φ,˙=𝑖U
23 1 5 2 3 14 hlhil0 φ0˙=0U
24 4 a1i φF=ScalarU
25 1 5 9 2 4 3 10 hlhilsbase2 φB=BaseF
26 1 5 9 2 4 3 11 hlhilsplus2 φ˙=+F
27 1 5 9 2 4 3 12 hlhilsmul2 φ×˙=F
28 1 2 4 17 3 hlhilnvl φG=*F
29 1 5 9 2 4 3 13 hlhils0 φQ=0F
30 1 2 3 hlhillvec φULVec
31 1 2 3 4 hlhilsrng φF*-Ring
32 3 3ad2ant1 φaVbVKHLWH
33 simp2 φaVbVaV
34 simp3 φaVbVbV
35 1 5 6 16 2 32 15 33 34 hlhilipval φaVbVa,˙b=Jba
36 1 5 6 9 10 16 32 33 34 hdmapipcl φaVbVJbaB
37 35 36 eqeltrd φaVbVa,˙bB
38 3 3ad2ant1 φdBaVbVcVKHLWH
39 simp31 φdBaVbVcVaV
40 simp32 φdBaVbVcVbV
41 simp33 φdBaVbVcVcV
42 simp2 φdBaVbVcVdB
43 1 5 6 7 8 9 10 11 12 16 38 39 40 41 42 hdmapln1 φdBaVbVcVJcd·˙a+˙b=d×˙Jca˙Jcb
44 1 5 3 dvhlmod φLLMod
45 44 3ad2ant1 φdBaVbVcVLLMod
46 6 9 8 10 lmodvscl LLModdBaVd·˙aV
47 45 42 39 46 syl3anc φdBaVbVcVd·˙aV
48 6 7 lmodvacl LLModd·˙aVbVd·˙a+˙bV
49 45 47 40 48 syl3anc φdBaVbVcVd·˙a+˙bV
50 1 5 6 16 2 38 15 49 41 hlhilipval φdBaVbVcVd·˙a+˙b,˙c=Jcd·˙a+˙b
51 1 5 6 16 2 38 15 39 41 hlhilipval φdBaVbVcVa,˙c=Jca
52 51 oveq2d φdBaVbVcVd×˙a,˙c=d×˙Jca
53 1 5 6 16 2 38 15 40 41 hlhilipval φdBaVbVcVb,˙c=Jcb
54 52 53 oveq12d φdBaVbVcVd×˙a,˙c˙b,˙c=d×˙Jca˙Jcb
55 43 50 54 3eqtr4d φdBaVbVcVd·˙a+˙b,˙c=d×˙a,˙c˙b,˙c
56 3 adantr φaVKHLWH
57 simpr φaVaV
58 1 5 6 16 2 56 15 57 57 hlhilipval φaVa,˙a=Jaa
59 58 eqeq1d φaVa,˙a=QJaa=Q
60 1 5 6 14 9 13 16 56 57 hdmapip0 φaVJaa=Qa=0˙
61 59 60 bitrd φaVa,˙a=Qa=0˙
62 61 biimp3a φaVa,˙a=Qa=0˙
63 1 5 6 16 17 32 33 34 hdmapg φaVbVGJba=Jab
64 35 fveq2d φaVbVGa,˙b=GJba
65 1 5 6 16 2 32 15 34 33 hlhilipval φaVbVb,˙a=Jab
66 63 64 65 3eqtr4d φaVbVGa,˙b=b,˙a
67 19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66 isphld φUPreHil