Metamath Proof Explorer


Theorem hlhilphllem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h
|- H = ( LHyp ` K )
hlhilphllem.u
|- U = ( ( HLHil ` K ) ` W )
hlhilphl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhilphllem.f
|- F = ( Scalar ` U )
hlhilphllem.l
|- L = ( ( DVecH ` K ) ` W )
hlhilphllem.v
|- V = ( Base ` L )
hlhilphllem.a
|- .+ = ( +g ` L )
hlhilphllem.s
|- .x. = ( .s ` L )
hlhilphllem.r
|- R = ( Scalar ` L )
hlhilphllem.b
|- B = ( Base ` R )
hlhilphllem.p
|- .+^ = ( +g ` R )
hlhilphllem.t
|- .X. = ( .r ` R )
hlhilphllem.q
|- Q = ( 0g ` R )
hlhilphllem.z
|- .0. = ( 0g ` L )
hlhilphllem.i
|- ., = ( .i ` U )
hlhilphllem.j
|- J = ( ( HDMap ` K ) ` W )
hlhilphllem.g
|- G = ( ( HGMap ` K ) ` W )
hlhilphllem.e
|- E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) )
Assertion hlhilphllem
|- ( ph -> U e. PreHil )

Proof

Step Hyp Ref Expression
1 hlhilphl.h
 |-  H = ( LHyp ` K )
2 hlhilphllem.u
 |-  U = ( ( HLHil ` K ) ` W )
3 hlhilphl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 hlhilphllem.f
 |-  F = ( Scalar ` U )
5 hlhilphllem.l
 |-  L = ( ( DVecH ` K ) ` W )
6 hlhilphllem.v
 |-  V = ( Base ` L )
7 hlhilphllem.a
 |-  .+ = ( +g ` L )
8 hlhilphllem.s
 |-  .x. = ( .s ` L )
9 hlhilphllem.r
 |-  R = ( Scalar ` L )
10 hlhilphllem.b
 |-  B = ( Base ` R )
11 hlhilphllem.p
 |-  .+^ = ( +g ` R )
12 hlhilphllem.t
 |-  .X. = ( .r ` R )
13 hlhilphllem.q
 |-  Q = ( 0g ` R )
14 hlhilphllem.z
 |-  .0. = ( 0g ` L )
15 hlhilphllem.i
 |-  ., = ( .i ` U )
16 hlhilphllem.j
 |-  J = ( ( HDMap ` K ) ` W )
17 hlhilphllem.g
 |-  G = ( ( HGMap ` K ) ` W )
18 hlhilphllem.e
 |-  E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) )
19 1 2 3 5 6 hlhilbase
 |-  ( ph -> V = ( Base ` U ) )
20 1 2 3 5 7 hlhilplus
 |-  ( ph -> .+ = ( +g ` U ) )
21 1 5 8 2 3 hlhilvsca
 |-  ( ph -> .x. = ( .s ` U ) )
22 15 a1i
 |-  ( ph -> ., = ( .i ` U ) )
23 1 5 2 3 14 hlhil0
 |-  ( ph -> .0. = ( 0g ` U ) )
24 4 a1i
 |-  ( ph -> F = ( Scalar ` U ) )
25 1 5 9 2 4 3 10 hlhilsbase2
 |-  ( ph -> B = ( Base ` F ) )
26 1 5 9 2 4 3 11 hlhilsplus2
 |-  ( ph -> .+^ = ( +g ` F ) )
27 1 5 9 2 4 3 12 hlhilsmul2
 |-  ( ph -> .X. = ( .r ` F ) )
28 1 2 4 17 3 hlhilnvl
 |-  ( ph -> G = ( *r ` F ) )
29 1 5 9 2 4 3 13 hlhils0
 |-  ( ph -> Q = ( 0g ` F ) )
30 1 2 3 hlhillvec
 |-  ( ph -> U e. LVec )
31 1 2 3 4 hlhilsrng
 |-  ( ph -> F e. *Ring )
32 3 3ad2ant1
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( K e. HL /\ W e. H ) )
33 simp2
 |-  ( ( ph /\ a e. V /\ b e. V ) -> a e. V )
34 simp3
 |-  ( ( ph /\ a e. V /\ b e. V ) -> b e. V )
35 1 5 6 16 2 32 15 33 34 hlhilipval
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( a ., b ) = ( ( J ` b ) ` a ) )
36 1 5 6 9 10 16 32 33 34 hdmapipcl
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( ( J ` b ) ` a ) e. B )
37 35 36 eqeltrd
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( a ., b ) e. B )
38 3 3ad2ant1
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( K e. HL /\ W e. H ) )
39 simp31
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> a e. V )
40 simp32
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> b e. V )
41 simp33
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> c e. V )
42 simp2
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> d e. B )
43 1 5 6 7 8 9 10 11 12 16 38 39 40 41 42 hdmapln1
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( J ` c ) ` ( ( d .x. a ) .+ b ) ) = ( ( d .X. ( ( J ` c ) ` a ) ) .+^ ( ( J ` c ) ` b ) ) )
44 1 5 3 dvhlmod
 |-  ( ph -> L e. LMod )
45 44 3ad2ant1
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> L e. LMod )
46 6 9 8 10 lmodvscl
 |-  ( ( L e. LMod /\ d e. B /\ a e. V ) -> ( d .x. a ) e. V )
47 45 42 39 46 syl3anc
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( d .x. a ) e. V )
48 6 7 lmodvacl
 |-  ( ( L e. LMod /\ ( d .x. a ) e. V /\ b e. V ) -> ( ( d .x. a ) .+ b ) e. V )
49 45 47 40 48 syl3anc
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( d .x. a ) .+ b ) e. V )
50 1 5 6 16 2 38 15 49 41 hlhilipval
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( ( d .x. a ) .+ b ) ., c ) = ( ( J ` c ) ` ( ( d .x. a ) .+ b ) ) )
51 1 5 6 16 2 38 15 39 41 hlhilipval
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( a ., c ) = ( ( J ` c ) ` a ) )
52 51 oveq2d
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( d .X. ( a ., c ) ) = ( d .X. ( ( J ` c ) ` a ) ) )
53 1 5 6 16 2 38 15 40 41 hlhilipval
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( b ., c ) = ( ( J ` c ) ` b ) )
54 52 53 oveq12d
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( d .X. ( a ., c ) ) .+^ ( b ., c ) ) = ( ( d .X. ( ( J ` c ) ` a ) ) .+^ ( ( J ` c ) ` b ) ) )
55 43 50 54 3eqtr4d
 |-  ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( ( d .x. a ) .+ b ) ., c ) = ( ( d .X. ( a ., c ) ) .+^ ( b ., c ) ) )
56 3 adantr
 |-  ( ( ph /\ a e. V ) -> ( K e. HL /\ W e. H ) )
57 simpr
 |-  ( ( ph /\ a e. V ) -> a e. V )
58 1 5 6 16 2 56 15 57 57 hlhilipval
 |-  ( ( ph /\ a e. V ) -> ( a ., a ) = ( ( J ` a ) ` a ) )
59 58 eqeq1d
 |-  ( ( ph /\ a e. V ) -> ( ( a ., a ) = Q <-> ( ( J ` a ) ` a ) = Q ) )
60 1 5 6 14 9 13 16 56 57 hdmapip0
 |-  ( ( ph /\ a e. V ) -> ( ( ( J ` a ) ` a ) = Q <-> a = .0. ) )
61 59 60 bitrd
 |-  ( ( ph /\ a e. V ) -> ( ( a ., a ) = Q <-> a = .0. ) )
62 61 biimp3a
 |-  ( ( ph /\ a e. V /\ ( a ., a ) = Q ) -> a = .0. )
63 1 5 6 16 17 32 33 34 hdmapg
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( ( J ` b ) ` a ) ) = ( ( J ` a ) ` b ) )
64 35 fveq2d
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( a ., b ) ) = ( G ` ( ( J ` b ) ` a ) ) )
65 1 5 6 16 2 32 15 34 33 hlhilipval
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( b ., a ) = ( ( J ` a ) ` b ) )
66 63 64 65 3eqtr4d
 |-  ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( a ., b ) ) = ( b ., a ) )
67 19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66 isphld
 |-  ( ph -> U e. PreHil )