Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilphl.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilphllem.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhilphl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
hlhilphllem.f |
|- F = ( Scalar ` U ) |
5 |
|
hlhilphllem.l |
|- L = ( ( DVecH ` K ) ` W ) |
6 |
|
hlhilphllem.v |
|- V = ( Base ` L ) |
7 |
|
hlhilphllem.a |
|- .+ = ( +g ` L ) |
8 |
|
hlhilphllem.s |
|- .x. = ( .s ` L ) |
9 |
|
hlhilphllem.r |
|- R = ( Scalar ` L ) |
10 |
|
hlhilphllem.b |
|- B = ( Base ` R ) |
11 |
|
hlhilphllem.p |
|- .+^ = ( +g ` R ) |
12 |
|
hlhilphllem.t |
|- .X. = ( .r ` R ) |
13 |
|
hlhilphllem.q |
|- Q = ( 0g ` R ) |
14 |
|
hlhilphllem.z |
|- .0. = ( 0g ` L ) |
15 |
|
hlhilphllem.i |
|- ., = ( .i ` U ) |
16 |
|
hlhilphllem.j |
|- J = ( ( HDMap ` K ) ` W ) |
17 |
|
hlhilphllem.g |
|- G = ( ( HGMap ` K ) ` W ) |
18 |
|
hlhilphllem.e |
|- E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) ) |
19 |
1 2 3 5 6
|
hlhilbase |
|- ( ph -> V = ( Base ` U ) ) |
20 |
1 2 3 5 7
|
hlhilplus |
|- ( ph -> .+ = ( +g ` U ) ) |
21 |
1 5 8 2 3
|
hlhilvsca |
|- ( ph -> .x. = ( .s ` U ) ) |
22 |
15
|
a1i |
|- ( ph -> ., = ( .i ` U ) ) |
23 |
1 5 2 3 14
|
hlhil0 |
|- ( ph -> .0. = ( 0g ` U ) ) |
24 |
4
|
a1i |
|- ( ph -> F = ( Scalar ` U ) ) |
25 |
1 5 9 2 4 3 10
|
hlhilsbase2 |
|- ( ph -> B = ( Base ` F ) ) |
26 |
1 5 9 2 4 3 11
|
hlhilsplus2 |
|- ( ph -> .+^ = ( +g ` F ) ) |
27 |
1 5 9 2 4 3 12
|
hlhilsmul2 |
|- ( ph -> .X. = ( .r ` F ) ) |
28 |
1 2 4 17 3
|
hlhilnvl |
|- ( ph -> G = ( *r ` F ) ) |
29 |
1 5 9 2 4 3 13
|
hlhils0 |
|- ( ph -> Q = ( 0g ` F ) ) |
30 |
1 2 3
|
hlhillvec |
|- ( ph -> U e. LVec ) |
31 |
1 2 3 4
|
hlhilsrng |
|- ( ph -> F e. *Ring ) |
32 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( K e. HL /\ W e. H ) ) |
33 |
|
simp2 |
|- ( ( ph /\ a e. V /\ b e. V ) -> a e. V ) |
34 |
|
simp3 |
|- ( ( ph /\ a e. V /\ b e. V ) -> b e. V ) |
35 |
1 5 6 16 2 32 15 33 34
|
hlhilipval |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( a ., b ) = ( ( J ` b ) ` a ) ) |
36 |
1 5 6 9 10 16 32 33 34
|
hdmapipcl |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( ( J ` b ) ` a ) e. B ) |
37 |
35 36
|
eqeltrd |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( a ., b ) e. B ) |
38 |
3
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( K e. HL /\ W e. H ) ) |
39 |
|
simp31 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> a e. V ) |
40 |
|
simp32 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> b e. V ) |
41 |
|
simp33 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> c e. V ) |
42 |
|
simp2 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> d e. B ) |
43 |
1 5 6 7 8 9 10 11 12 16 38 39 40 41 42
|
hdmapln1 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( J ` c ) ` ( ( d .x. a ) .+ b ) ) = ( ( d .X. ( ( J ` c ) ` a ) ) .+^ ( ( J ` c ) ` b ) ) ) |
44 |
1 5 3
|
dvhlmod |
|- ( ph -> L e. LMod ) |
45 |
44
|
3ad2ant1 |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> L e. LMod ) |
46 |
6 9 8 10
|
lmodvscl |
|- ( ( L e. LMod /\ d e. B /\ a e. V ) -> ( d .x. a ) e. V ) |
47 |
45 42 39 46
|
syl3anc |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( d .x. a ) e. V ) |
48 |
6 7
|
lmodvacl |
|- ( ( L e. LMod /\ ( d .x. a ) e. V /\ b e. V ) -> ( ( d .x. a ) .+ b ) e. V ) |
49 |
45 47 40 48
|
syl3anc |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( d .x. a ) .+ b ) e. V ) |
50 |
1 5 6 16 2 38 15 49 41
|
hlhilipval |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( ( d .x. a ) .+ b ) ., c ) = ( ( J ` c ) ` ( ( d .x. a ) .+ b ) ) ) |
51 |
1 5 6 16 2 38 15 39 41
|
hlhilipval |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( a ., c ) = ( ( J ` c ) ` a ) ) |
52 |
51
|
oveq2d |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( d .X. ( a ., c ) ) = ( d .X. ( ( J ` c ) ` a ) ) ) |
53 |
1 5 6 16 2 38 15 40 41
|
hlhilipval |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( b ., c ) = ( ( J ` c ) ` b ) ) |
54 |
52 53
|
oveq12d |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( d .X. ( a ., c ) ) .+^ ( b ., c ) ) = ( ( d .X. ( ( J ` c ) ` a ) ) .+^ ( ( J ` c ) ` b ) ) ) |
55 |
43 50 54
|
3eqtr4d |
|- ( ( ph /\ d e. B /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( ( ( d .x. a ) .+ b ) ., c ) = ( ( d .X. ( a ., c ) ) .+^ ( b ., c ) ) ) |
56 |
3
|
adantr |
|- ( ( ph /\ a e. V ) -> ( K e. HL /\ W e. H ) ) |
57 |
|
simpr |
|- ( ( ph /\ a e. V ) -> a e. V ) |
58 |
1 5 6 16 2 56 15 57 57
|
hlhilipval |
|- ( ( ph /\ a e. V ) -> ( a ., a ) = ( ( J ` a ) ` a ) ) |
59 |
58
|
eqeq1d |
|- ( ( ph /\ a e. V ) -> ( ( a ., a ) = Q <-> ( ( J ` a ) ` a ) = Q ) ) |
60 |
1 5 6 14 9 13 16 56 57
|
hdmapip0 |
|- ( ( ph /\ a e. V ) -> ( ( ( J ` a ) ` a ) = Q <-> a = .0. ) ) |
61 |
59 60
|
bitrd |
|- ( ( ph /\ a e. V ) -> ( ( a ., a ) = Q <-> a = .0. ) ) |
62 |
61
|
biimp3a |
|- ( ( ph /\ a e. V /\ ( a ., a ) = Q ) -> a = .0. ) |
63 |
1 5 6 16 17 32 33 34
|
hdmapg |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( ( J ` b ) ` a ) ) = ( ( J ` a ) ` b ) ) |
64 |
35
|
fveq2d |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( a ., b ) ) = ( G ` ( ( J ` b ) ` a ) ) ) |
65 |
1 5 6 16 2 32 15 34 33
|
hlhilipval |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( b ., a ) = ( ( J ` a ) ` b ) ) |
66 |
63 64 65
|
3eqtr4d |
|- ( ( ph /\ a e. V /\ b e. V ) -> ( G ` ( a ., b ) ) = ( b ., a ) ) |
67 |
19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66
|
isphld |
|- ( ph -> U e. PreHil ) |