| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilphl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhilphllem.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 3 |
|
hlhilphl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 4 |
|
hlhilphllem.f |
|- F = ( Scalar ` U ) |
| 5 |
|
hlhilphllem.l |
|- L = ( ( DVecH ` K ) ` W ) |
| 6 |
|
hlhilphllem.v |
|- V = ( Base ` L ) |
| 7 |
|
hlhilphllem.a |
|- .+ = ( +g ` L ) |
| 8 |
|
hlhilphllem.s |
|- .x. = ( .s ` L ) |
| 9 |
|
hlhilphllem.r |
|- R = ( Scalar ` L ) |
| 10 |
|
hlhilphllem.b |
|- B = ( Base ` R ) |
| 11 |
|
hlhilphllem.p |
|- .+^ = ( +g ` R ) |
| 12 |
|
hlhilphllem.t |
|- .X. = ( .r ` R ) |
| 13 |
|
hlhilphllem.q |
|- Q = ( 0g ` R ) |
| 14 |
|
hlhilphllem.z |
|- .0. = ( 0g ` L ) |
| 15 |
|
hlhilphllem.i |
|- ., = ( .i ` U ) |
| 16 |
|
hlhilphllem.j |
|- J = ( ( HDMap ` K ) ` W ) |
| 17 |
|
hlhilphllem.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 18 |
|
hlhilphllem.e |
|- E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) ) |
| 19 |
|
hlhilphllem.o |
|- O = ( ocv ` U ) |
| 20 |
|
hlhilphllem.c |
|- C = ( ClSubSp ` U ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hlhilphllem |
|- ( ph -> U e. PreHil ) |
| 22 |
3
|
adantr |
|- ( ( ph /\ x e. C ) -> ( K e. HL /\ W e. H ) ) |
| 23 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 24 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 25 |
1 24 2 20 3
|
hlhillcs |
|- ( ph -> C = ran ( ( DIsoH ` K ) ` W ) ) |
| 26 |
25
|
eleq2d |
|- ( ph -> ( x e. C <-> x e. ran ( ( DIsoH ` K ) ` W ) ) ) |
| 27 |
26
|
biimpa |
|- ( ( ph /\ x e. C ) -> x e. ran ( ( DIsoH ` K ) ` W ) ) |
| 28 |
1 5 24 6
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x C_ V ) |
| 29 |
3 28
|
sylan |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x C_ V ) |
| 30 |
27 29
|
syldan |
|- ( ( ph /\ x e. C ) -> x C_ V ) |
| 31 |
1 5 2 22 6 23 19 30
|
hlhilocv |
|- ( ( ph /\ x e. C ) -> ( O ` x ) = ( ( ( ocH ` K ) ` W ) ` x ) ) |
| 32 |
31
|
oveq2d |
|- ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( O ` x ) ) = ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) ) |
| 33 |
|
eqid |
|- ( LSSum ` L ) = ( LSSum ` L ) |
| 34 |
1 5 2 3 33
|
hlhillsm |
|- ( ph -> ( LSSum ` L ) = ( LSSum ` U ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ x e. C ) -> ( LSSum ` L ) = ( LSSum ` U ) ) |
| 36 |
35
|
oveqd |
|- ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( O ` x ) ) = ( x ( LSSum ` U ) ( O ` x ) ) ) |
| 37 |
|
eqid |
|- ( LSubSp ` L ) = ( LSubSp ` L ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) ) |
| 39 |
1 5 24 37
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x e. ( LSubSp ` L ) ) |
| 40 |
3 39
|
sylan |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x e. ( LSubSp ` L ) ) |
| 41 |
1 24 5 6 23 38 29
|
dochoccl |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
| 42 |
41
|
biimpd |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
| 43 |
42
|
ex |
|- ( ph -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) ) |
| 44 |
43
|
pm2.43d |
|- ( ph -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) |
| 45 |
44
|
imp |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) |
| 46 |
1 23 5 6 37 33 38 40 45
|
dochexmid |
|- ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) = V ) |
| 47 |
27 46
|
syldan |
|- ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) = V ) |
| 48 |
32 36 47
|
3eqtr3d |
|- ( ( ph /\ x e. C ) -> ( x ( LSSum ` U ) ( O ` x ) ) = V ) |
| 49 |
1 2 3 5 6
|
hlhilbase |
|- ( ph -> V = ( Base ` U ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ x e. C ) -> V = ( Base ` U ) ) |
| 51 |
48 50
|
eqtrd |
|- ( ( ph /\ x e. C ) -> ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) ) |
| 52 |
51
|
ralrimiva |
|- ( ph -> A. x e. C ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) ) |
| 53 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 54 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 55 |
53 54 19 20
|
ishil2 |
|- ( U e. Hil <-> ( U e. PreHil /\ A. x e. C ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) ) ) |
| 56 |
21 52 55
|
sylanbrc |
|- ( ph -> U e. Hil ) |