Metamath Proof Explorer


Theorem hlhilhillem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h
|- H = ( LHyp ` K )
hlhilphllem.u
|- U = ( ( HLHil ` K ) ` W )
hlhilphl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhilphllem.f
|- F = ( Scalar ` U )
hlhilphllem.l
|- L = ( ( DVecH ` K ) ` W )
hlhilphllem.v
|- V = ( Base ` L )
hlhilphllem.a
|- .+ = ( +g ` L )
hlhilphllem.s
|- .x. = ( .s ` L )
hlhilphllem.r
|- R = ( Scalar ` L )
hlhilphllem.b
|- B = ( Base ` R )
hlhilphllem.p
|- .+^ = ( +g ` R )
hlhilphllem.t
|- .X. = ( .r ` R )
hlhilphllem.q
|- Q = ( 0g ` R )
hlhilphllem.z
|- .0. = ( 0g ` L )
hlhilphllem.i
|- ., = ( .i ` U )
hlhilphllem.j
|- J = ( ( HDMap ` K ) ` W )
hlhilphllem.g
|- G = ( ( HGMap ` K ) ` W )
hlhilphllem.e
|- E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) )
hlhilphllem.o
|- O = ( ocv ` U )
hlhilphllem.c
|- C = ( ClSubSp ` U )
Assertion hlhilhillem
|- ( ph -> U e. Hil )

Proof

Step Hyp Ref Expression
1 hlhilphl.h
 |-  H = ( LHyp ` K )
2 hlhilphllem.u
 |-  U = ( ( HLHil ` K ) ` W )
3 hlhilphl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 hlhilphllem.f
 |-  F = ( Scalar ` U )
5 hlhilphllem.l
 |-  L = ( ( DVecH ` K ) ` W )
6 hlhilphllem.v
 |-  V = ( Base ` L )
7 hlhilphllem.a
 |-  .+ = ( +g ` L )
8 hlhilphllem.s
 |-  .x. = ( .s ` L )
9 hlhilphllem.r
 |-  R = ( Scalar ` L )
10 hlhilphllem.b
 |-  B = ( Base ` R )
11 hlhilphllem.p
 |-  .+^ = ( +g ` R )
12 hlhilphllem.t
 |-  .X. = ( .r ` R )
13 hlhilphllem.q
 |-  Q = ( 0g ` R )
14 hlhilphllem.z
 |-  .0. = ( 0g ` L )
15 hlhilphllem.i
 |-  ., = ( .i ` U )
16 hlhilphllem.j
 |-  J = ( ( HDMap ` K ) ` W )
17 hlhilphllem.g
 |-  G = ( ( HGMap ` K ) ` W )
18 hlhilphllem.e
 |-  E = ( x e. V , y e. V |-> ( ( J ` y ) ` x ) )
19 hlhilphllem.o
 |-  O = ( ocv ` U )
20 hlhilphllem.c
 |-  C = ( ClSubSp ` U )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hlhilphllem
 |-  ( ph -> U e. PreHil )
22 3 adantr
 |-  ( ( ph /\ x e. C ) -> ( K e. HL /\ W e. H ) )
23 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
24 eqid
 |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W )
25 1 24 2 20 3 hlhillcs
 |-  ( ph -> C = ran ( ( DIsoH ` K ) ` W ) )
26 25 eleq2d
 |-  ( ph -> ( x e. C <-> x e. ran ( ( DIsoH ` K ) ` W ) ) )
27 26 biimpa
 |-  ( ( ph /\ x e. C ) -> x e. ran ( ( DIsoH ` K ) ` W ) )
28 1 5 24 6 dihrnss
 |-  ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x C_ V )
29 3 28 sylan
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x C_ V )
30 27 29 syldan
 |-  ( ( ph /\ x e. C ) -> x C_ V )
31 1 5 2 22 6 23 19 30 hlhilocv
 |-  ( ( ph /\ x e. C ) -> ( O ` x ) = ( ( ( ocH ` K ) ` W ) ` x ) )
32 31 oveq2d
 |-  ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( O ` x ) ) = ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) )
33 eqid
 |-  ( LSSum ` L ) = ( LSSum ` L )
34 1 5 2 3 33 hlhillsm
 |-  ( ph -> ( LSSum ` L ) = ( LSSum ` U ) )
35 34 adantr
 |-  ( ( ph /\ x e. C ) -> ( LSSum ` L ) = ( LSSum ` U ) )
36 35 oveqd
 |-  ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( O ` x ) ) = ( x ( LSSum ` U ) ( O ` x ) ) )
37 eqid
 |-  ( LSubSp ` L ) = ( LSubSp ` L )
38 3 adantr
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) )
39 1 5 24 37 dihrnlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x e. ( LSubSp ` L ) )
40 3 39 sylan
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> x e. ( LSubSp ` L ) )
41 1 24 5 6 23 38 29 dochoccl
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) <-> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) )
42 41 biimpd
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) )
43 42 ex
 |-  ( ph -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) ) )
44 43 pm2.43d
 |-  ( ph -> ( x e. ran ( ( DIsoH ` K ) ` W ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x ) )
45 44 imp
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` x ) ) = x )
46 1 23 5 6 37 33 38 40 45 dochexmid
 |-  ( ( ph /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) = V )
47 27 46 syldan
 |-  ( ( ph /\ x e. C ) -> ( x ( LSSum ` L ) ( ( ( ocH ` K ) ` W ) ` x ) ) = V )
48 32 36 47 3eqtr3d
 |-  ( ( ph /\ x e. C ) -> ( x ( LSSum ` U ) ( O ` x ) ) = V )
49 1 2 3 5 6 hlhilbase
 |-  ( ph -> V = ( Base ` U ) )
50 49 adantr
 |-  ( ( ph /\ x e. C ) -> V = ( Base ` U ) )
51 48 50 eqtrd
 |-  ( ( ph /\ x e. C ) -> ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) )
52 51 ralrimiva
 |-  ( ph -> A. x e. C ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) )
53 eqid
 |-  ( Base ` U ) = ( Base ` U )
54 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
55 53 54 19 20 ishil2
 |-  ( U e. Hil <-> ( U e. PreHil /\ A. x e. C ( x ( LSSum ` U ) ( O ` x ) ) = ( Base ` U ) ) )
56 21 52 55 sylanbrc
 |-  ( ph -> U e. Hil )