Metamath Proof Explorer


Theorem hlhils1N

Description: The scalar ring unity for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hlhilsbase.h H=LHypK
hlhilsbase.l L=DVecHKW
hlhilsbase.s S=ScalarL
hlhilsbase.u U=HLHilKW
hlhilsbase.r R=ScalarU
hlhilsbase.k φKHLWH
hlhils1.t 1˙=1S
Assertion hlhils1N φ1˙=1R

Proof

Step Hyp Ref Expression
1 hlhilsbase.h H=LHypK
2 hlhilsbase.l L=DVecHKW
3 hlhilsbase.s S=ScalarL
4 hlhilsbase.u U=HLHilKW
5 hlhilsbase.r R=ScalarU
6 hlhilsbase.k φKHLWH
7 hlhils1.t 1˙=1S
8 eqidd φBaseS=BaseS
9 eqid BaseS=BaseS
10 1 2 3 4 5 6 9 hlhilsbase2 φBaseS=BaseR
11 eqid S=S
12 1 2 3 4 5 6 11 hlhilsmul2 φS=R
13 12 oveqdr φxBaseSyBaseSxSy=xRy
14 8 10 13 rngidpropd φ1S=1R
15 7 14 eqtrid φ1˙=1R