Metamath Proof Explorer


Theorem hlhilsbaseOLD

Description: Obsolete version of hlhilsbase as of 6-Nov-2024. The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h H=LHypK
hlhilslem.e E=EDRingKW
hlhilslem.u U=HLHilKW
hlhilslem.r R=ScalarU
hlhilslem.k φKHLWH
hlhilsbase.c C=BaseE
Assertion hlhilsbaseOLD φC=BaseR

Proof

Step Hyp Ref Expression
1 hlhilslem.h H=LHypK
2 hlhilslem.e E=EDRingKW
3 hlhilslem.u U=HLHilKW
4 hlhilslem.r R=ScalarU
5 hlhilslem.k φKHLWH
6 hlhilsbase.c C=BaseE
7 df-base Base=Slot1
8 1nn 1
9 1lt4 1<4
10 1 2 3 4 5 7 8 9 6 hlhilslemOLD φC=BaseR