Metamath Proof Explorer


Theorem hoaddsub

Description: Law for operator addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddsub S:T:U:S+opT-opU=S-opU+opT

Proof

Step Hyp Ref Expression
1 hoaddcom S:T:S+opT=T+opS
2 1 oveq1d S:T:S+opT-opU=T+opS-opU
3 2 3adant3 S:T:U:S+opT-opU=T+opS-opU
4 hoaddsubass T:S:U:T+opS-opU=T+opS-opU
5 4 3com12 S:T:U:T+opS-opU=T+opS-opU
6 hosubcl S:U:S-opU:
7 hoaddcom T:S-opU:T+opS-opU=S-opU+opT
8 7 ex T:S-opU:T+opS-opU=S-opU+opT
9 6 8 syl5 T:S:U:T+opS-opU=S-opU+opT
10 9 expd T:S:U:T+opS-opU=S-opU+opT
11 10 com12 S:T:U:T+opS-opU=S-opU+opT
12 11 3imp S:T:U:T+opS-opU=S-opU+opT
13 3 5 12 3eqtrd S:T:U:S+opT-opU=S-opU+opT