Metamath Proof Explorer


Theorem hoaddsubass

Description: Associative-type law for addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddsubass S:T:U:S+opT-opU=S+opT-opU

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 hosubcl 0hop:U:0hop-opU:
3 1 2 mpan U:0hop-opU:
4 hoaddass S:T:0hop-opU:S+opT+op0hop-opU=S+opT+op0hop-opU
5 3 4 syl3an3 S:T:U:S+opT+op0hop-opU=S+opT+op0hop-opU
6 hoaddcl S:T:S+opT:
7 ho0sub S+opT:U:S+opT-opU=S+opT+op0hop-opU
8 6 7 stoic3 S:T:U:S+opT-opU=S+opT+op0hop-opU
9 ho0sub T:U:T-opU=T+op0hop-opU
10 9 3adant1 S:T:U:T-opU=T+op0hop-opU
11 10 oveq2d S:T:U:S+opT-opU=S+opT+op0hop-opU
12 5 8 11 3eqtr4d S:T:U:S+opT-opU=S+opT-opU