Metamath Proof Explorer


Theorem hoeq1

Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq1 S:T:xySxihy=TxihyS=T

Proof

Step Hyp Ref Expression
1 ffvelcdm S:xSx
2 ffvelcdm T:xTx
3 hial2eq SxTxySxihy=TxihySx=Tx
4 1 2 3 syl2an S:xT:xySxihy=TxihySx=Tx
5 4 anandirs S:T:xySxihy=TxihySx=Tx
6 5 ralbidva S:T:xySxihy=TxihyxSx=Tx
7 ffn S:SFn
8 ffn T:TFn
9 eqfnfv SFnTFnS=TxSx=Tx
10 7 8 9 syl2an S:T:S=TxSx=Tx
11 6 10 bitr4d S:T:xySxihy=TxihyS=T