Metamath Proof Explorer


Theorem hoeq2

Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq2 S:T:xyxihSy=xihTyS=T

Proof

Step Hyp Ref Expression
1 ralcom xyxihSy=xihTyyxxihSy=xihTy
2 1 a1i S:T:xyxihSy=xihTyyxxihSy=xihTy
3 ffvelcdm S:ySy
4 ffvelcdm T:yTy
5 hial2eq2 SyTyxxihSy=xihTySy=Ty
6 hial2eq SyTyxSyihx=TyihxSy=Ty
7 5 6 bitr4d SyTyxxihSy=xihTyxSyihx=Tyihx
8 3 4 7 syl2an S:yT:yxxihSy=xihTyxSyihx=Tyihx
9 8 anandirs S:T:yxxihSy=xihTyxSyihx=Tyihx
10 9 ralbidva S:T:yxxihSy=xihTyyxSyihx=Tyihx
11 hoeq1 S:T:yxSyihx=TyihxS=T
12 2 10 11 3bitrd S:T:xyxihSy=xihTyS=T