Metamath Proof Explorer


Theorem hof2

Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M = Hom F C
hofval.c φ C Cat
hof1.b B = Base C
hof1.h H = Hom C
hof1.x φ X B
hof1.y φ Y B
hof2.z φ Z B
hof2.w φ W B
hof2.o · ˙ = comp C
hof2.f φ F Z H X
hof2.g φ G Y H W
hof2.k φ K X H Y
Assertion hof2 φ F X Y 2 nd M Z W G K = G X Y · ˙ W K Z X · ˙ W F

Proof

Step Hyp Ref Expression
1 hofval.m M = Hom F C
2 hofval.c φ C Cat
3 hof1.b B = Base C
4 hof1.h H = Hom C
5 hof1.x φ X B
6 hof1.y φ Y B
7 hof2.z φ Z B
8 hof2.w φ W B
9 hof2.o · ˙ = comp C
10 hof2.f φ F Z H X
11 hof2.g φ G Y H W
12 hof2.k φ K X H Y
13 1 2 3 4 5 6 7 8 9 10 11 hof2val φ F X Y 2 nd M Z W G = h X H Y G X Y · ˙ W h Z X · ˙ W F
14 simpr φ h = K h = K
15 14 oveq2d φ h = K G X Y · ˙ W h = G X Y · ˙ W K
16 15 oveq1d φ h = K G X Y · ˙ W h Z X · ˙ W F = G X Y · ˙ W K Z X · ˙ W F
17 ovexd φ G X Y · ˙ W K Z X · ˙ W F V
18 13 16 12 17 fvmptd φ F X Y 2 nd M Z W G K = G X Y · ˙ W K Z X · ˙ W F