Metamath Proof Explorer


Theorem hof2

Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M=HomFC
hofval.c φCCat
hof1.b B=BaseC
hof1.h H=HomC
hof1.x φXB
hof1.y φYB
hof2.z φZB
hof2.w φWB
hof2.o ·˙=compC
hof2.f φFZHX
hof2.g φGYHW
hof2.k φKXHY
Assertion hof2 φFXY2ndMZWGK=GXY·˙WKZX·˙WF

Proof

Step Hyp Ref Expression
1 hofval.m M=HomFC
2 hofval.c φCCat
3 hof1.b B=BaseC
4 hof1.h H=HomC
5 hof1.x φXB
6 hof1.y φYB
7 hof2.z φZB
8 hof2.w φWB
9 hof2.o ·˙=compC
10 hof2.f φFZHX
11 hof2.g φGYHW
12 hof2.k φKXHY
13 1 2 3 4 5 6 7 8 9 10 11 hof2val φFXY2ndMZWG=hXHYGXY·˙WhZX·˙WF
14 simpr φh=Kh=K
15 14 oveq2d φh=KGXY·˙Wh=GXY·˙WK
16 15 oveq1d φh=KGXY·˙WhZX·˙WF=GXY·˙WKZX·˙WF
17 ovexd φGXY·˙WKZX·˙WFV
18 13 16 12 17 fvmptd φFXY2ndMZWGK=GXY·˙WKZX·˙WF