Metamath Proof Explorer


Theorem hof2val

Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M = Hom F C
hofval.c φ C Cat
hof1.b B = Base C
hof1.h H = Hom C
hof1.x φ X B
hof1.y φ Y B
hof2.z φ Z B
hof2.w φ W B
hof2.o · ˙ = comp C
hof2.f φ F Z H X
hof2.g φ G Y H W
Assertion hof2val φ F X Y 2 nd M Z W G = h X H Y G X Y · ˙ W h Z X · ˙ W F

Proof

Step Hyp Ref Expression
1 hofval.m M = Hom F C
2 hofval.c φ C Cat
3 hof1.b B = Base C
4 hof1.h H = Hom C
5 hof1.x φ X B
6 hof1.y φ Y B
7 hof2.z φ Z B
8 hof2.w φ W B
9 hof2.o · ˙ = comp C
10 hof2.f φ F Z H X
11 hof2.g φ G Y H W
12 1 2 3 4 5 6 7 8 9 hof2fval φ X Y 2 nd M Z W = f Z H X , g Y H W h X H Y g X Y · ˙ W h Z X · ˙ W f
13 simplrr φ f = F g = G h X H Y g = G
14 13 oveq1d φ f = F g = G h X H Y g X Y · ˙ W h = G X Y · ˙ W h
15 simplrl φ f = F g = G h X H Y f = F
16 14 15 oveq12d φ f = F g = G h X H Y g X Y · ˙ W h Z X · ˙ W f = G X Y · ˙ W h Z X · ˙ W F
17 16 mpteq2dva φ f = F g = G h X H Y g X Y · ˙ W h Z X · ˙ W f = h X H Y G X Y · ˙ W h Z X · ˙ W F
18 ovex X H Y V
19 18 mptex h X H Y G X Y · ˙ W h Z X · ˙ W F V
20 19 a1i φ h X H Y G X Y · ˙ W h Z X · ˙ W F V
21 12 17 10 11 20 ovmpod φ F X Y 2 nd M Z W G = h X H Y G X Y · ˙ W h Z X · ˙ W F