Metamath Proof Explorer


Theorem homaval

Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H=HomaC
homafval.b B=BaseC
homafval.c φCCat
homaval.j J=HomC
homaval.x φXB
homaval.y φYB
Assertion homaval φXHY=XY×XJY

Proof

Step Hyp Ref Expression
1 homarcl.h H=HomaC
2 homafval.b B=BaseC
3 homafval.c φCCat
4 homaval.j J=HomC
5 homaval.x φXB
6 homaval.y φYB
7 df-ov XHY=HXY
8 1 2 3 4 homafval φH=zB×Bz×Jz
9 simpr φz=XYz=XY
10 9 sneqd φz=XYz=XY
11 9 fveq2d φz=XYJz=JXY
12 df-ov XJY=JXY
13 11 12 eqtr4di φz=XYJz=XJY
14 10 13 xpeq12d φz=XYz×Jz=XY×XJY
15 5 6 opelxpd φXYB×B
16 snex XYV
17 ovex XJYV
18 16 17 xpex XY×XJYV
19 18 a1i φXY×XJYV
20 8 14 15 19 fvmptd φHXY=XY×XJY
21 7 20 eqtrid φXHY=XY×XJY