Metamath Proof Explorer


Theorem hosmval

Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hosmval S:T:S+opT=xSx+Tx

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap SS:
3 1 1 elmap TT:
4 fveq1 f=Sfx=Sx
5 4 oveq1d f=Sfx+gx=Sx+gx
6 5 mpteq2dv f=Sxfx+gx=xSx+gx
7 fveq1 g=Tgx=Tx
8 7 oveq2d g=TSx+gx=Sx+Tx
9 8 mpteq2dv g=TxSx+gx=xSx+Tx
10 df-hosum +op=f,gxfx+gx
11 1 mptex xSx+TxV
12 6 9 10 11 ovmpo STS+opT=xSx+Tx
13 2 3 12 syl2anbr S:T:S+opT=xSx+Tx