Metamath Proof Explorer


Theorem hosubeq0i

Description: If the difference between two operators is zero, they are equal. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 T:
hosd1.3 U:
Assertion hosubeq0i T-opU=0hopT=U

Proof

Step Hyp Ref Expression
1 hosd1.2 T:
2 hosd1.3 U:
3 1 2 honegsubi T+op-1·opU=T-opU
4 3 eqeq1i T+op-1·opU=0hopT-opU=0hop
5 oveq1 T+op-1·opU=0hopT+op-1·opU+opU=0hop+opU
6 4 5 sylbir T-opU=0hopT+op-1·opU+opU=0hop+opU
7 neg1cn 1
8 homulcl 1U:-1·opU:
9 7 2 8 mp2an -1·opU:
10 1 9 2 hoadd32i T+op-1·opU+opU=T+opU+op-1·opU
11 1 2 9 hoaddassi T+opU+op-1·opU=T+opU+op-1·opU
12 2 2 honegsubi U+op-1·opU=U-opU
13 2 hodidi U-opU=0hop
14 12 13 eqtri U+op-1·opU=0hop
15 14 oveq2i T+opU+op-1·opU=T+op0hop
16 1 hoaddridi T+op0hop=T
17 15 16 eqtri T+opU+op-1·opU=T
18 11 17 eqtri T+opU+op-1·opU=T
19 10 18 eqtri T+op-1·opU+opU=T
20 ho0f 0hop:
21 20 2 hoaddcomi 0hop+opU=U+op0hop
22 2 hoaddridi U+op0hop=U
23 21 22 eqtri 0hop+opU=U
24 6 19 23 3eqtr3g T-opU=0hopT=U
25 oveq1 T=UT-opU=U-opU
26 25 13 eqtrdi T=UT-opU=0hop
27 24 26 impbii T-opU=0hopT=U