| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hosd1.2 |
|- T : ~H --> ~H |
| 2 |
|
hosd1.3 |
|- U : ~H --> ~H |
| 3 |
1 2
|
honegsubi |
|- ( T +op ( -u 1 .op U ) ) = ( T -op U ) |
| 4 |
3
|
eqeq1i |
|- ( ( T +op ( -u 1 .op U ) ) = 0hop <-> ( T -op U ) = 0hop ) |
| 5 |
|
oveq1 |
|- ( ( T +op ( -u 1 .op U ) ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) |
| 6 |
4 5
|
sylbir |
|- ( ( T -op U ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
|
homulcl |
|- ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) |
| 9 |
7 2 8
|
mp2an |
|- ( -u 1 .op U ) : ~H --> ~H |
| 10 |
1 9 2
|
hoadd32i |
|- ( ( T +op ( -u 1 .op U ) ) +op U ) = ( ( T +op U ) +op ( -u 1 .op U ) ) |
| 11 |
1 2 9
|
hoaddassi |
|- ( ( T +op U ) +op ( -u 1 .op U ) ) = ( T +op ( U +op ( -u 1 .op U ) ) ) |
| 12 |
2 2
|
honegsubi |
|- ( U +op ( -u 1 .op U ) ) = ( U -op U ) |
| 13 |
2
|
hodidi |
|- ( U -op U ) = 0hop |
| 14 |
12 13
|
eqtri |
|- ( U +op ( -u 1 .op U ) ) = 0hop |
| 15 |
14
|
oveq2i |
|- ( T +op ( U +op ( -u 1 .op U ) ) ) = ( T +op 0hop ) |
| 16 |
1
|
hoaddridi |
|- ( T +op 0hop ) = T |
| 17 |
15 16
|
eqtri |
|- ( T +op ( U +op ( -u 1 .op U ) ) ) = T |
| 18 |
11 17
|
eqtri |
|- ( ( T +op U ) +op ( -u 1 .op U ) ) = T |
| 19 |
10 18
|
eqtri |
|- ( ( T +op ( -u 1 .op U ) ) +op U ) = T |
| 20 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 21 |
20 2
|
hoaddcomi |
|- ( 0hop +op U ) = ( U +op 0hop ) |
| 22 |
2
|
hoaddridi |
|- ( U +op 0hop ) = U |
| 23 |
21 22
|
eqtri |
|- ( 0hop +op U ) = U |
| 24 |
6 19 23
|
3eqtr3g |
|- ( ( T -op U ) = 0hop -> T = U ) |
| 25 |
|
oveq1 |
|- ( T = U -> ( T -op U ) = ( U -op U ) ) |
| 26 |
25 13
|
eqtrdi |
|- ( T = U -> ( T -op U ) = 0hop ) |
| 27 |
24 26
|
impbii |
|- ( ( T -op U ) = 0hop <-> T = U ) |