| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hosd1.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
hosd1.3 |
⊢ 𝑈 : ℋ ⟶ ℋ |
| 3 |
1 2
|
honegsubi |
⊢ ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 −op 𝑈 ) |
| 4 |
3
|
eqeq1i |
⊢ ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = 0hop ↔ ( 𝑇 −op 𝑈 ) = 0hop ) |
| 5 |
|
oveq1 |
⊢ ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = 0hop → ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) +op 𝑈 ) = ( 0hop +op 𝑈 ) ) |
| 6 |
4 5
|
sylbir |
⊢ ( ( 𝑇 −op 𝑈 ) = 0hop → ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) +op 𝑈 ) = ( 0hop +op 𝑈 ) ) |
| 7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 8 |
|
homulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
| 9 |
7 2 8
|
mp2an |
⊢ ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ |
| 10 |
1 9 2
|
hoadd32i |
⊢ ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) +op 𝑈 ) = ( ( 𝑇 +op 𝑈 ) +op ( - 1 ·op 𝑈 ) ) |
| 11 |
1 2 9
|
hoaddassi |
⊢ ( ( 𝑇 +op 𝑈 ) +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 +op ( 𝑈 +op ( - 1 ·op 𝑈 ) ) ) |
| 12 |
2 2
|
honegsubi |
⊢ ( 𝑈 +op ( - 1 ·op 𝑈 ) ) = ( 𝑈 −op 𝑈 ) |
| 13 |
2
|
hodidi |
⊢ ( 𝑈 −op 𝑈 ) = 0hop |
| 14 |
12 13
|
eqtri |
⊢ ( 𝑈 +op ( - 1 ·op 𝑈 ) ) = 0hop |
| 15 |
14
|
oveq2i |
⊢ ( 𝑇 +op ( 𝑈 +op ( - 1 ·op 𝑈 ) ) ) = ( 𝑇 +op 0hop ) |
| 16 |
1
|
hoaddridi |
⊢ ( 𝑇 +op 0hop ) = 𝑇 |
| 17 |
15 16
|
eqtri |
⊢ ( 𝑇 +op ( 𝑈 +op ( - 1 ·op 𝑈 ) ) ) = 𝑇 |
| 18 |
11 17
|
eqtri |
⊢ ( ( 𝑇 +op 𝑈 ) +op ( - 1 ·op 𝑈 ) ) = 𝑇 |
| 19 |
10 18
|
eqtri |
⊢ ( ( 𝑇 +op ( - 1 ·op 𝑈 ) ) +op 𝑈 ) = 𝑇 |
| 20 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 21 |
20 2
|
hoaddcomi |
⊢ ( 0hop +op 𝑈 ) = ( 𝑈 +op 0hop ) |
| 22 |
2
|
hoaddridi |
⊢ ( 𝑈 +op 0hop ) = 𝑈 |
| 23 |
21 22
|
eqtri |
⊢ ( 0hop +op 𝑈 ) = 𝑈 |
| 24 |
6 19 23
|
3eqtr3g |
⊢ ( ( 𝑇 −op 𝑈 ) = 0hop → 𝑇 = 𝑈 ) |
| 25 |
|
oveq1 |
⊢ ( 𝑇 = 𝑈 → ( 𝑇 −op 𝑈 ) = ( 𝑈 −op 𝑈 ) ) |
| 26 |
25 13
|
eqtrdi |
⊢ ( 𝑇 = 𝑈 → ( 𝑇 −op 𝑈 ) = 0hop ) |
| 27 |
24 26
|
impbii |
⊢ ( ( 𝑇 −op 𝑈 ) = 0hop ↔ 𝑇 = 𝑈 ) |