Metamath Proof Explorer


Theorem hosubsub

Description: Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubsub S:T:U:S-opT-opU=S-opT+opU

Proof

Step Hyp Ref Expression
1 hosubsub2 S:T:U:S-opT-opU=S+opU-opT
2 hoaddsubass S:U:T:S+opU-opT=S+opU-opT
3 hoaddsub S:U:T:S+opU-opT=S-opT+opU
4 2 3 eqtr3d S:U:T:S+opU-opT=S-opT+opU
5 4 3com23 S:T:U:S+opU-opT=S-opT+opU
6 1 5 eqtrd S:T:U:S-opT-opU=S-opT+opU