Metamath Proof Explorer


Theorem hstri

Description: Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in Mayet3 p. 10. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstr.1 AC
hstr.2 BC
Assertion hstri fCHStatesnormfA=1normfB=1AB

Proof

Step Hyp Ref Expression
1 hstr.1 AC
2 hstr.2 BC
3 dfral2 fCHStatesnormfA=1normfB=1¬fCHStates¬normfA=1normfB=1
4 1 2 strlem1 ¬ABuABnormu=1
5 eqid xCprojxu=xCprojxu
6 biid uABnormu=1uABnormu=1
7 5 6 1 2 hstrlem3 uABnormu=1xCprojxuCHStates
8 5 6 1 2 hstrlem6 uABnormu=1¬normxCprojxuA=1normxCprojxuB=1
9 fveq1 f=xCprojxufA=xCprojxuA
10 9 fveqeq2d f=xCprojxunormfA=1normxCprojxuA=1
11 fveq1 f=xCprojxufB=xCprojxuB
12 11 fveqeq2d f=xCprojxunormfB=1normxCprojxuB=1
13 10 12 imbi12d f=xCprojxunormfA=1normfB=1normxCprojxuA=1normxCprojxuB=1
14 13 notbid f=xCprojxu¬normfA=1normfB=1¬normxCprojxuA=1normxCprojxuB=1
15 14 rspcev xCprojxuCHStates¬normxCprojxuA=1normxCprojxuB=1fCHStates¬normfA=1normfB=1
16 7 8 15 syl2anc uABnormu=1fCHStates¬normfA=1normfB=1
17 16 rexlimiva uABnormu=1fCHStates¬normfA=1normfB=1
18 4 17 syl ¬ABfCHStates¬normfA=1normfB=1
19 18 con1i ¬fCHStates¬normfA=1normfB=1AB
20 3 19 sylbi fCHStatesnormfA=1normfB=1AB