Description: Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in Mayet3 p. 10. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hstr.1 | |
|
hstr.2 | |
||
Assertion | hstri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstr.1 | |
|
2 | hstr.2 | |
|
3 | dfral2 | |
|
4 | 1 2 | strlem1 | |
5 | eqid | |
|
6 | biid | |
|
7 | 5 6 1 2 | hstrlem3 | |
8 | 5 6 1 2 | hstrlem6 | |
9 | fveq1 | |
|
10 | 9 | fveqeq2d | |
11 | fveq1 | |
|
12 | 11 | fveqeq2d | |
13 | 10 12 | imbi12d | |
14 | 13 | notbid | |
15 | 14 | rspcev | |
16 | 7 8 15 | syl2anc | |
17 | 16 | rexlimiva | |
18 | 4 17 | syl | |
19 | 18 | con1i | |
20 | 3 19 | sylbi | |