Metamath Proof Explorer


Theorem hstrlem6

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 S=xCprojxu
hstrlem3.2 φuABnormu=1
hstrlem3.3 AC
hstrlem3.4 BC
Assertion hstrlem6 φ¬normSA=1normSB=1

Proof

Step Hyp Ref Expression
1 hstrlem3.1 S=xCprojxu
2 hstrlem3.2 φuABnormu=1
3 hstrlem3.3 AC
4 hstrlem3.4 BC
5 1 2 3 4 hstrlem4 φnormSA=1
6 1 2 3 4 hstrlem3 φSCHStates
7 hstcl SCHStatesBCSB
8 6 4 7 sylancl φSB
9 normcl SBnormSB
10 8 9 syl φnormSB
11 1 2 3 4 hstrlem5 φnormSB<1
12 10 11 ltned φnormSB1
13 12 neneqd φ¬normSB=1
14 5 13 jcnd φ¬normSA=1normSB=1