Metamath Proof Explorer


Theorem hvsubaddi

Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
hvaddcan.3 C
Assertion hvsubaddi A-B=CB+C=A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 hvaddcan.3 C
4 1 2 hvsubvali A-B=A+-1B
5 4 eqeq1i A-B=CA+-1B=C
6 neg1cn 1
7 6 2 hvmulcli -1B
8 2 1 7 hvadd12i B+A+-1B=A+B+-1B
9 2 hvnegidi B+-1B=0
10 9 oveq2i A+B+-1B=A+0
11 ax-hvaddid AA+0=A
12 1 11 ax-mp A+0=A
13 8 10 12 3eqtri B+A+-1B=A
14 13 eqeq1i B+A+-1B=B+CA=B+C
15 1 7 hvaddcli A+-1B
16 2 15 3 hvaddcani B+A+-1B=B+CA+-1B=C
17 eqcom A=B+CB+C=A
18 14 16 17 3bitr3i A+-1B=CB+C=A
19 5 18 bitri A-B=CB+C=A