Metamath Proof Explorer


Theorem hvsubeq0i

Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvsubeq0i A-B=0A=B

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A-B=A+-1B
4 3 eqeq1i A-B=0A+-1B=0
5 oveq1 A+-1B=0A+-1B+B=0+B
6 4 5 sylbi A-B=0A+-1B+B=0+B
7 neg1cn 1
8 7 2 hvmulcli -1B
9 1 8 2 hvadd32i A+-1B+B=A+B+-1B
10 1 2 8 hvassi A+B+-1B=A+B+-1B
11 2 hvnegidi B+-1B=0
12 11 oveq2i A+B+-1B=A+0
13 ax-hvaddid AA+0=A
14 1 13 ax-mp A+0=A
15 12 14 eqtri A+B+-1B=A
16 10 15 eqtri A+B+-1B=A
17 9 16 eqtri A+-1B+B=A
18 2 hvaddlidi 0+B=B
19 6 17 18 3eqtr3g A-B=0A=B
20 oveq1 A=BA-B=B-B
21 hvsubid BB-B=0
22 2 21 ax-mp B-B=0
23 20 22 eqtrdi A=BA-B=0
24 19 23 impbii A-B=0A=B