Metamath Proof Explorer


Theorem iccssioo2

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo2 CABDABCDAB

Proof

Step Hyp Ref Expression
1 ne0i CABAB
2 1 adantr CABDABAB
3 ndmioo ¬A*B*AB=
4 3 necon1ai ABA*B*
5 2 4 syl CABDABA*B*
6 eliooord CABA<CC<B
7 6 adantr CABDABA<CC<B
8 7 simpld CABDABA<C
9 eliooord DABA<DD<B
10 9 adantl CABDABA<DD<B
11 10 simprd CABDABD<B
12 iccssioo A*B*A<CD<BCDAB
13 5 8 11 12 syl12anc CABDABCDAB