Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iccssioo2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | |
|
2 | 1 | adantr | |
3 | ndmioo | |
|
4 | 3 | necon1ai | |
5 | 2 4 | syl | |
6 | eliooord | |
|
7 | 6 | adantr | |
8 | 7 | simpld | |
9 | eliooord | |
|
10 | 9 | adantl | |
11 | 10 | simprd | |
12 | iccssioo | |
|
13 | 5 8 11 12 | syl12anc | |