Metamath Proof Explorer


Theorem idfu2nd

Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I=idfuncC
idfuval.b B=BaseC
idfuval.c φCCat
idfuval.h H=HomC
idfu2nd.x φXB
idfu2nd.y φYB
Assertion idfu2nd φX2ndIY=IXHY

Proof

Step Hyp Ref Expression
1 idfuval.i I=idfuncC
2 idfuval.b B=BaseC
3 idfuval.c φCCat
4 idfuval.h H=HomC
5 idfu2nd.x φXB
6 idfu2nd.y φYB
7 df-ov X2ndIY=2ndIXY
8 1 2 3 4 idfuval φI=IBzB×BIHz
9 8 fveq2d φ2ndI=2ndIBzB×BIHz
10 2 fvexi BV
11 resiexg BVIBV
12 10 11 ax-mp IBV
13 10 10 xpex B×BV
14 13 mptex zB×BIHzV
15 12 14 op2nd 2ndIBzB×BIHz=zB×BIHz
16 9 15 eqtrdi φ2ndI=zB×BIHz
17 simpr φz=XYz=XY
18 17 fveq2d φz=XYHz=HXY
19 df-ov XHY=HXY
20 18 19 eqtr4di φz=XYHz=XHY
21 20 reseq2d φz=XYIHz=IXHY
22 5 6 opelxpd φXYB×B
23 ovex XHYV
24 resiexg XHYVIXHYV
25 23 24 mp1i φIXHYV
26 16 21 22 25 fvmptd φ2ndIXY=IXHY
27 7 26 eqtrid φX2ndIY=IXHY