Metamath Proof Explorer


Theorem idllmulcl

Description: An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idllmulcl.1 G=1stR
idllmulcl.2 H=2ndR
idllmulcl.3 X=ranG
Assertion idllmulcl RRingOpsIIdlRAIBXBHAI

Proof

Step Hyp Ref Expression
1 idllmulcl.1 G=1stR
2 idllmulcl.2 H=2ndR
3 idllmulcl.3 X=ranG
4 eqid GIdG=GIdG
5 1 2 3 4 isidl RRingOpsIIdlRIXGIdGIxIyIxGyIzXzHxIxHzI
6 5 biimpa RRingOpsIIdlRIXGIdGIxIyIxGyIzXzHxIxHzI
7 6 simp3d RRingOpsIIdlRxIyIxGyIzXzHxIxHzI
8 simpl zHxIxHzIzHxI
9 8 ralimi zXzHxIxHzIzXzHxI
10 9 adantl yIxGyIzXzHxIxHzIzXzHxI
11 10 ralimi xIyIxGyIzXzHxIxHzIxIzXzHxI
12 7 11 syl RRingOpsIIdlRxIzXzHxI
13 oveq2 x=AzHx=zHA
14 13 eleq1d x=AzHxIzHAI
15 oveq1 z=BzHA=BHA
16 15 eleq1d z=BzHAIBHAI
17 14 16 rspc2v AIBXxIzXzHxIBHAI
18 12 17 mpan9 RRingOpsIIdlRAIBXBHAI