Metamath Proof Explorer


Theorem idmon

Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses idmon.b B=BaseC
idmon.h H=HomC
idmon.i 1˙=IdC
idmon.c φCCat
idmon.x φXB
idmon.m M=MonoC
Assertion idmon φ1˙XXMX

Proof

Step Hyp Ref Expression
1 idmon.b B=BaseC
2 idmon.h H=HomC
3 idmon.i 1˙=IdC
4 idmon.c φCCat
5 idmon.x φXB
6 idmon.m M=MonoC
7 1 2 3 4 5 catidcl φ1˙XXHX
8 4 adantr φzBgzHXhzHXCCat
9 simpr1 φzBgzHXhzHXzB
10 eqid compC=compC
11 5 adantr φzBgzHXhzHXXB
12 simpr2 φzBgzHXhzHXgzHX
13 1 2 3 8 9 10 11 12 catlid φzBgzHXhzHX1˙XzXcompCXg=g
14 simpr3 φzBgzHXhzHXhzHX
15 1 2 3 8 9 10 11 14 catlid φzBgzHXhzHX1˙XzXcompCXh=h
16 13 15 eqeq12d φzBgzHXhzHX1˙XzXcompCXg=1˙XzXcompCXhg=h
17 16 biimpd φzBgzHXhzHX1˙XzXcompCXg=1˙XzXcompCXhg=h
18 17 ralrimivvva φzBgzHXhzHX1˙XzXcompCXg=1˙XzXcompCXhg=h
19 1 2 10 6 4 5 5 ismon2 φ1˙XXMX1˙XXHXzBgzHXhzHX1˙XzXcompCXg=1˙XzXcompCXhg=h
20 7 18 19 mpbir2and φ1˙XXMX