Metamath Proof Explorer


Theorem imaco

Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006)

Ref Expression
Assertion imaco ABC=ABC

Proof

Step Hyp Ref Expression
1 df-rex yBCyAxyyBCyAx
2 vex xV
3 2 elima xABCyBCyAx
4 rexcom4 zCyzByyAxyzCzByyAx
5 r19.41v zCzByyAxzCzByyAx
6 5 exbii yzCzByyAxyzCzByyAx
7 4 6 bitri zCyzByyAxyzCzByyAx
8 2 elima xABCzCzABx
9 vex zV
10 9 2 brco zABxyzByyAx
11 10 rexbii zCzABxzCyzByyAx
12 8 11 bitri xABCzCyzByyAx
13 vex yV
14 13 elima yBCzCzBy
15 14 anbi1i yBCyAxzCzByyAx
16 15 exbii yyBCyAxyzCzByyAx
17 7 12 16 3bitr4i xABCyyBCyAx
18 1 3 17 3bitr4ri xABCxABC
19 18 eqriv ABC=ABC