Metamath Proof Explorer


Theorem imainrect

Description: Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion imainrect G A × B Y = G Y A B

Proof

Step Hyp Ref Expression
1 df-res G A × B Y = G A × B Y × V
2 1 rneqi ran G A × B Y = ran G A × B Y × V
3 df-ima G A × B Y = ran G A × B Y
4 df-ima G Y A = ran G Y A
5 df-res G Y A = G Y A × V
6 5 rneqi ran G Y A = ran G Y A × V
7 4 6 eqtri G Y A = ran G Y A × V
8 7 ineq1i G Y A B = ran G Y A × V B
9 cnvin G Y A × V V × B -1 = G Y A × V -1 V × B -1
10 inxp A × V V × B = A V × V B
11 inv1 A V = A
12 incom V B = B V
13 inv1 B V = B
14 12 13 eqtri V B = B
15 11 14 xpeq12i A V × V B = A × B
16 10 15 eqtr2i A × B = A × V V × B
17 16 ineq2i G Y × V A × B = G Y × V A × V V × B
18 in32 G A × B Y × V = G Y × V A × B
19 xpindir Y A × V = Y × V A × V
20 19 ineq2i G Y A × V = G Y × V A × V
21 inass G Y × V A × V = G Y × V A × V
22 20 21 eqtr4i G Y A × V = G Y × V A × V
23 22 ineq1i G Y A × V V × B = G Y × V A × V V × B
24 inass G Y × V A × V V × B = G Y × V A × V V × B
25 23 24 eqtri G Y A × V V × B = G Y × V A × V V × B
26 17 18 25 3eqtr4i G A × B Y × V = G Y A × V V × B
27 26 cnveqi G A × B Y × V -1 = G Y A × V V × B -1
28 df-res G Y A × V -1 B = G Y A × V -1 B × V
29 cnvxp V × B -1 = B × V
30 29 ineq2i G Y A × V -1 V × B -1 = G Y A × V -1 B × V
31 28 30 eqtr4i G Y A × V -1 B = G Y A × V -1 V × B -1
32 9 27 31 3eqtr4ri G Y A × V -1 B = G A × B Y × V -1
33 32 dmeqi dom G Y A × V -1 B = dom G A × B Y × V -1
34 incom B dom G Y A × V -1 = dom G Y A × V -1 B
35 dmres dom G Y A × V -1 B = B dom G Y A × V -1
36 df-rn ran G Y A × V = dom G Y A × V -1
37 36 ineq1i ran G Y A × V B = dom G Y A × V -1 B
38 34 35 37 3eqtr4ri ran G Y A × V B = dom G Y A × V -1 B
39 df-rn ran G A × B Y × V = dom G A × B Y × V -1
40 33 38 39 3eqtr4ri ran G A × B Y × V = ran G Y A × V B
41 8 40 eqtr4i G Y A B = ran G A × B Y × V
42 2 3 41 3eqtr4i G A × B Y = G Y A B