Metamath Proof Explorer


Theorem imainrect

Description: Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion imainrect GA×BY=GYAB

Proof

Step Hyp Ref Expression
1 df-res GA×BY=GA×BY×V
2 1 rneqi ranGA×BY=ranGA×BY×V
3 df-ima GA×BY=ranGA×BY
4 df-ima GYA=ranGYA
5 df-res GYA=GYA×V
6 5 rneqi ranGYA=ranGYA×V
7 4 6 eqtri GYA=ranGYA×V
8 7 ineq1i GYAB=ranGYA×VB
9 cnvin GYA×VV×B-1=GYA×V-1V×B-1
10 inxp A×VV×B=AV×VB
11 inv1 AV=A
12 incom VB=BV
13 inv1 BV=B
14 12 13 eqtri VB=B
15 11 14 xpeq12i AV×VB=A×B
16 10 15 eqtr2i A×B=A×VV×B
17 16 ineq2i GY×VA×B=GY×VA×VV×B
18 in32 GA×BY×V=GY×VA×B
19 xpindir YA×V=Y×VA×V
20 19 ineq2i GYA×V=GY×VA×V
21 inass GY×VA×V=GY×VA×V
22 20 21 eqtr4i GYA×V=GY×VA×V
23 22 ineq1i GYA×VV×B=GY×VA×VV×B
24 inass GY×VA×VV×B=GY×VA×VV×B
25 23 24 eqtri GYA×VV×B=GY×VA×VV×B
26 17 18 25 3eqtr4i GA×BY×V=GYA×VV×B
27 26 cnveqi GA×BY×V-1=GYA×VV×B-1
28 df-res GYA×V-1B=GYA×V-1B×V
29 cnvxp V×B-1=B×V
30 29 ineq2i GYA×V-1V×B-1=GYA×V-1B×V
31 28 30 eqtr4i GYA×V-1B=GYA×V-1V×B-1
32 9 27 31 3eqtr4ri GYA×V-1B=GA×BY×V-1
33 32 dmeqi domGYA×V-1B=domGA×BY×V-1
34 incom BdomGYA×V-1=domGYA×V-1B
35 dmres domGYA×V-1B=BdomGYA×V-1
36 df-rn ranGYA×V=domGYA×V-1
37 36 ineq1i ranGYA×VB=domGYA×V-1B
38 34 35 37 3eqtr4ri ranGYA×VB=domGYA×V-1B
39 df-rn ranGA×BY×V=domGA×BY×V-1
40 33 38 39 3eqtr4ri ranGA×BY×V=ranGYA×VB
41 8 40 eqtr4i GYAB=ranGA×BY×V
42 2 3 41 3eqtr4i GA×BY=GYAB