Metamath Proof Explorer


Theorem imainss

Description: An upper bound for intersection with an image. Theorem 41 of Suppes p. 66. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion imainss RABRAR-1B

Proof

Step Hyp Ref Expression
1 vex yV
2 vex xV
3 1 2 brcnv yR-1xxRy
4 19.8a yByR-1xyyByR-1x
5 3 4 sylan2br yBxRyyyByR-1x
6 5 ancoms xRyyByyByR-1x
7 6 anim2i xAxRyyBxAyyByR-1x
8 simprl xAxRyyBxRy
9 7 8 jca xAxRyyBxAyyByR-1xxRy
10 9 anassrs xAxRyyBxAyyByR-1xxRy
11 elin xAR-1BxAxR-1B
12 2 elima2 xR-1ByyByR-1x
13 12 anbi2i xAxR-1BxAyyByR-1x
14 11 13 bitri xAR-1BxAyyByR-1x
15 14 anbi1i xAR-1BxRyxAyyByR-1xxRy
16 10 15 sylibr xAxRyyBxAR-1BxRy
17 16 eximi xxAxRyyBxxAR-1BxRy
18 1 elima2 yRAxxAxRy
19 18 anbi1i yRAyBxxAxRyyB
20 elin yRAByRAyB
21 19.41v xxAxRyyBxxAxRyyB
22 19 20 21 3bitr4i yRABxxAxRyyB
23 1 elima2 yRAR-1BxxAR-1BxRy
24 17 22 23 3imtr4i yRAByRAR-1B
25 24 ssriv RABRAR-1B