Metamath Proof Explorer


Theorem imasmndf1

Description: The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasmndf1.u U=F𝑠R
imasmndf1.v V=BaseR
Assertion imasmndf1 F:V1-1BRMndUMnd

Proof

Step Hyp Ref Expression
1 imasmndf1.u U=F𝑠R
2 imasmndf1.v V=BaseR
3 1 a1i F:V1-1BRMndU=F𝑠R
4 2 a1i F:V1-1BRMndV=BaseR
5 eqid +R=+R
6 f1f1orn F:V1-1BF:V1-1 ontoranF
7 6 adantr F:V1-1BRMndF:V1-1 ontoranF
8 f1ofo F:V1-1 ontoranFF:VontoranF
9 7 8 syl F:V1-1BRMndF:VontoranF
10 7 f1ocpbl F:V1-1BRMndaVbVpVqVFa=FpFb=FqFa+Rb=Fp+Rq
11 simpr F:V1-1BRMndRMnd
12 eqid 0R=0R
13 3 4 5 9 10 11 12 imasmnd F:V1-1BRMndUMndF0R=0U
14 13 simpld F:V1-1BRMndUMnd