Metamath Proof Explorer


Theorem imastset

Description: The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imastset.j J=TopOpenR
imastset.o O=TopSetU
Assertion imastset φO=JqTopF

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imastset.j J=TopOpenR
6 imastset.o O=TopSetU
7 eqid +R=+R
8 eqid R=R
9 eqid ScalarR=ScalarR
10 eqid BaseScalarR=BaseScalarR
11 eqid R=R
12 eqid 𝑖R=𝑖R
13 eqid distR=distR
14 eqid R=R
15 eqid +U=+U
16 1 2 3 4 7 15 imasplusg φ+U=pVqVFpFqFp+Rq
17 eqid U=U
18 1 2 3 4 8 17 imasmulr φU=pVqVFpFqFpRq
19 eqid U=U
20 1 2 3 4 9 10 11 19 imasvsca φU=qVpBaseScalarR,xFqFpRq
21 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
22 eqidd φJqTopF=JqTopF
23 eqid distU=distU
24 1 2 3 4 13 23 imasds φdistU=xB,yBsupuranzwV×V1u|F1stw1=xF2ndwu=yv1u1F2ndwv=F1stwv+1𝑠*distRz*<
25 eqidd φFRF-1=FRF-1
26 1 2 7 8 9 10 11 12 5 13 14 16 18 20 21 22 24 25 3 4 imasval φU=BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
27 26 fveq2d φTopSetU=TopSetBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
28 ovex JqTopFV
29 eqid BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU=BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
30 29 imasvalstr BasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistUStruct112
31 tsetid TopSet=SlotTopSetndx
32 snsstp1 TopSetndxJqTopFTopSetndxJqTopFndxFRF-1distndxdistU
33 ssun2 TopSetndxJqTopFndxFRF-1distndxdistUBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
34 32 33 sstri TopSetndxJqTopFBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
35 30 31 34 strfv JqTopFVJqTopF=TopSetBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
36 28 35 ax-mp JqTopF=TopSetBasendxB+ndx+UndxUScalarndxScalarRndxU𝑖ndxpVqVFpFqp𝑖RqTopSetndxJqTopFndxFRF-1distndxdistU
37 27 6 36 3eqtr4g φO=JqTopF