Metamath Proof Explorer


Theorem imcj

Description: Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion imcj AA=A

Proof

Step Hyp Ref Expression
1 recl AA
2 1 recnd AA
3 ax-icn i
4 imcl AA
5 4 recnd AA
6 mulcl iAiA
7 3 5 6 sylancr AiA
8 2 7 negsubd AA+iA=AiA
9 mulneg2 iAiA=iA
10 3 5 9 sylancr AiA=iA
11 10 oveq2d AA+iA=A+iA
12 remim AA=AiA
13 8 11 12 3eqtr4rd AA=A+iA
14 13 fveq2d AA=A+iA
15 4 renegcld AA
16 crim AAA+iA=A
17 1 15 16 syl2anc AA+iA=A
18 14 17 eqtrd AA=A