Metamath Proof Explorer


Theorem imsdval2

Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdval2.1 X=BaseSetU
imsdval2.2 G=+vU
imsdval2.4 S=𝑠OLDU
imsdval2.6 N=normCVU
imsdval2.8 D=IndMetU
Assertion imsdval2 UNrmCVecAXBXADB=NAG-1SB

Proof

Step Hyp Ref Expression
1 imsdval2.1 X=BaseSetU
2 imsdval2.2 G=+vU
3 imsdval2.4 S=𝑠OLDU
4 imsdval2.6 N=normCVU
5 imsdval2.8 D=IndMetU
6 eqid -vU=-vU
7 1 6 4 5 imsdval UNrmCVecAXBXADB=NA-vUB
8 1 2 3 6 nvmval UNrmCVecAXBXA-vUB=AG-1SB
9 8 fveq2d UNrmCVecAXBXNA-vUB=NAG-1SB
10 7 9 eqtrd UNrmCVecAXBXADB=NAG-1SB