Metamath Proof Explorer


Theorem imval2

Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion imval2 AA=AA2i

Proof

Step Hyp Ref Expression
1 imcl AA
2 1 recnd AA
3 2mulicn 2i
4 2muline0 2i0
5 divcan4 A2i2i0A2i2i=A
6 3 4 5 mp3an23 AA2i2i=A
7 2 6 syl AA2i2i=A
8 recl AA
9 8 recnd AA
10 ax-icn i
11 mulcl iAiA
12 10 2 11 sylancr AiA
13 9 12 addcld AA+iA
14 13 9 12 subsubd AA+iA-AiA=A+iA-A+iA
15 replim AA=A+iA
16 remim AA=AiA
17 15 16 oveq12d AAA=A+iA-AiA
18 12 2timesd A2iA=iA+iA
19 mulcom A2iA2i=2iA
20 3 19 mpan2 AA2i=2iA
21 2cn 2
22 mulass 2iA2iA=2iA
23 21 10 22 mp3an12 A2iA=2iA
24 20 23 eqtrd AA2i=2iA
25 2 24 syl AA2i=2iA
26 9 12 pncan2d AA+iA-A=iA
27 26 oveq1d AA+iA-A+iA=iA+iA
28 18 25 27 3eqtr4d AA2i=A+iA-A+iA
29 14 17 28 3eqtr4rd AA2i=AA
30 29 oveq1d AA2i2i=AA2i
31 7 30 eqtr3d AA=AA2i