Metamath Proof Explorer


Theorem ind1

Description: Value of the indicator function where it is 1 . (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Assertion ind1 OVAOXA𝟙OAX=1

Proof

Step Hyp Ref Expression
1 simp2 OVAOXAAO
2 simp3 OVAOXAXA
3 1 2 sseldd OVAOXAXO
4 indfval OVAOXO𝟙OAX=ifXA10
5 3 4 syld3an3 OVAOXA𝟙OAX=ifXA10
6 iftrue XAifXA10=1
7 6 3ad2ant3 OVAOXAifXA10=1
8 5 7 eqtrd OVAOXA𝟙OAX=1