Metamath Proof Explorer


Theorem indcardi

Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses indcardi.a φAV
indcardi.b φTdomcard
indcardi.c φRTySRχψ
indcardi.d x=yψχ
indcardi.e x=Aψθ
indcardi.f x=yR=S
indcardi.g x=AR=T
Assertion indcardi φθ

Proof

Step Hyp Ref Expression
1 indcardi.a φAV
2 indcardi.b φTdomcard
3 indcardi.c φRTySRχψ
4 indcardi.d x=yψχ
5 indcardi.e x=Aψθ
6 indcardi.f x=yR=S
7 indcardi.g x=AR=T
8 domrefg TdomcardTT
9 2 8 syl φTT
10 cardon cardTOn
11 10 a1i φcardTOn
12 simpl1 φcardROncardRcardTycardScardRSTχRTφ
13 simpr φcardROncardRcardTycardScardRSTχRTRT
14 simpr φcardROncardRcardTRTSRSR
15 simpl1 φcardROncardRcardTRTSRφ
16 15 2 syl φcardROncardRcardTRTSRTdomcard
17 sdomdom SRSR
18 simpl3 φcardROncardRcardTRTSRRT
19 domtr SRRTST
20 17 18 19 syl2an2 φcardROncardRcardTRTSRST
21 numdom TdomcardSTSdomcard
22 16 20 21 syl2anc φcardROncardRcardTRTSRSdomcard
23 numdom TdomcardRTRdomcard
24 16 18 23 syl2anc φcardROncardRcardTRTSRRdomcard
25 cardsdom2 SdomcardRdomcardcardScardRSR
26 22 24 25 syl2anc φcardROncardRcardTRTSRcardScardRSR
27 14 26 mpbird φcardROncardRcardTRTSRcardScardR
28 id cardScardRSTχcardScardRSTχ
29 28 com3l cardScardRSTcardScardRSTχχ
30 27 20 29 sylc φcardROncardRcardTRTSRcardScardRSTχχ
31 30 ex φcardROncardRcardTRTSRcardScardRSTχχ
32 31 com23 φcardROncardRcardTRTcardScardRSTχSRχ
33 32 alimdv φcardROncardRcardTRTycardScardRSTχySRχ
34 33 3exp φcardROncardRcardTRTycardScardRSTχySRχ
35 34 com34 φcardROncardRcardTycardScardRSTχRTySRχ
36 35 3imp1 φcardROncardRcardTycardScardRSTχRTySRχ
37 12 13 36 3 syl3anc φcardROncardRcardTycardScardRSTχRTψ
38 37 ex φcardROncardRcardTycardScardRSTχRTψ
39 6 breq1d x=yRTST
40 39 4 imbi12d x=yRTψSTχ
41 7 breq1d x=ARTTT
42 41 5 imbi12d x=ARTψTTθ
43 6 fveq2d x=ycardR=cardS
44 7 fveq2d x=AcardR=cardT
45 1 11 38 40 42 43 44 tfisi φTTθ
46 9 45 mpd φθ