Metamath Proof Explorer


Theorem indconst1

Description: Indicator of the whole set. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion indconst1 O V 𝟙 O O = O × 1

Proof

Step Hyp Ref Expression
1 ssid O O
2 indval2 O V O O 𝟙 O O = O × 1 O O × 0
3 1 2 mpan2 O V 𝟙 O O = O × 1 O O × 0
4 difid O O =
5 4 xpeq1i O O × 0 = × 0
6 0xp × 0 =
7 5 6 eqtri O O × 0 =
8 7 a1i O V O O × 0 =
9 8 uneq2d O V O × 1 O O × 0 = O × 1
10 un0 O × 1 = O × 1
11 10 a1i O V O × 1 = O × 1
12 3 9 11 3eqtrd O V 𝟙 O O = O × 1