Metamath Proof Explorer


Theorem indstr

Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001)

Ref Expression
Hypotheses indstr.1 x=yφψ
indstr.2 xyy<xψφ
Assertion indstr xφ

Proof

Step Hyp Ref Expression
1 indstr.1 x=yφψ
2 indstr.2 xyy<xψφ
3 pm3.24 ¬φ¬φ
4 nnre xx
5 nnre yy
6 lenlt xyxy¬y<x
7 4 5 6 syl2an xyxy¬y<x
8 7 imbi2d xy¬ψxy¬ψ¬y<x
9 con34b y<xψ¬ψ¬y<x
10 8 9 bitr4di xy¬ψxyy<xψ
11 10 ralbidva xy¬ψxyyy<xψ
12 11 2 sylbid xy¬ψxyφ
13 12 anim2d x¬φy¬ψxy¬φφ
14 ancom ¬φφφ¬φ
15 13 14 imbitrdi x¬φy¬ψxyφ¬φ
16 3 15 mtoi x¬¬φy¬ψxy
17 16 nrex ¬x¬φy¬ψxy
18 1 notbid x=y¬φ¬ψ
19 18 nnwos x¬φx¬φy¬ψxy
20 17 19 mto ¬x¬φ
21 dfral2 xφ¬x¬φ
22 20 21 mpbir xφ
23 22 rspec xφ