Metamath Proof Explorer


Theorem infdif2

Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdif2 AdomcardBdomcardωAABBAB

Proof

Step Hyp Ref Expression
1 domnsym ABB¬BAB
2 simp3 AdomcardωABABA
3 infdif AdomcardωABAABA
4 3 ensymd AdomcardωABAAAB
5 sdomentr BAAABBAB
6 2 4 5 syl2anc AdomcardωABABAB
7 1 6 nsyl3 AdomcardωABA¬ABB
8 7 3expia AdomcardωABA¬ABB
9 8 3adant2 AdomcardBdomcardωABA¬ABB
10 9 con2d AdomcardBdomcardωAABB¬BA
11 domtri2 AdomcardBdomcardAB¬BA
12 11 3adant3 AdomcardBdomcardωAAB¬BA
13 10 12 sylibrd AdomcardBdomcardωAABBAB
14 simp1 AdomcardBdomcardωAAdomcard
15 difss ABA
16 ssdomg AdomcardABAABA
17 14 15 16 mpisyl AdomcardBdomcardωAABA
18 domtr ABAABABB
19 18 ex ABAABABB
20 17 19 syl AdomcardBdomcardωAABABB
21 13 20 impbid AdomcardBdomcardωAABBAB