Metamath Proof Explorer


Theorem infdif2

Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdif2
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B <-> A ~<_ B ) )

Proof

Step Hyp Ref Expression
1 domnsym
 |-  ( ( A \ B ) ~<_ B -> -. B ~< ( A \ B ) )
2 simp3
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A )
3 infdif
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A )
4 3 ensymd
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~~ ( A \ B ) )
5 sdomentr
 |-  ( ( B ~< A /\ A ~~ ( A \ B ) ) -> B ~< ( A \ B ) )
6 2 4 5 syl2anc
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< ( A \ B ) )
7 1 6 nsyl3
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~<_ B )
8 7 3expia
 |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) )
9 8 3adant2
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) )
10 9 con2d
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> -. B ~< A ) )
11 domtri2
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B <-> -. B ~< A ) )
12 11 3adant3
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B <-> -. B ~< A ) )
13 10 12 sylibrd
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> A ~<_ B ) )
14 simp1
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A e. dom card )
15 difss
 |-  ( A \ B ) C_ A
16 ssdomg
 |-  ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) )
17 14 15 16 mpisyl
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A \ B ) ~<_ A )
18 domtr
 |-  ( ( ( A \ B ) ~<_ A /\ A ~<_ B ) -> ( A \ B ) ~<_ B )
19 18 ex
 |-  ( ( A \ B ) ~<_ A -> ( A ~<_ B -> ( A \ B ) ~<_ B ) )
20 17 19 syl
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B -> ( A \ B ) ~<_ B ) )
21 13 20 impbid
 |-  ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B <-> A ~<_ B ) )